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Abstract— This paper investigates the time-varying for-
mation control problem of multi-agent systems. A novel
leader-follower formation architecture is proposed, termed
“linear formation control”. In this architecture, both the
shape of the formation and its translational motions are
represented by a linear transformation matrix determined
by the positions of the leaders. This setup allows the
leaders’ movements to generate time-varying desired for-
mations. To facilitate followers’ tracking of desired forma-
tions, an integrated control structure is proposed, com-
prising two estimators and a compatible controller. The
first estimator is responsible for obtaining the time-varying
linear formation shape parameters by measuring the lead-
ers’ relative displacements, the kernel of which essentially
involves solving a system of time-varying linear equations
in a distributed manner. The second estimator focuses
on inferring the time-varying translation parameters us-
ing leaders’ positions. Subsequently, utilizing the outputs
of these estimators, a tracking controller is proposed to
track the desired time-varying formation precisely. Finally,
the effectiveness of the proposed estimation and control
schemes is demonstrated through simulations.

Index Terms— Time-varying formation control, coopera-
tive estimation, time-varying linear equations, multi-agent
systems.

I. INTRODUCTION

In collaborative tasks, the behavior of multi-agent systems
is often expected to be cohesive. Formation control serves
as a unified protocol to coordinate interactions among agents
for achieving collaborative objectives. For example, formation
control has important applications in cooperative encirclement
[1], cooperative transportation [2], [3], agricultural operations
[4], and cloud seeding operations [5]. These diverse appli-
cations owe their success to the ongoing development of
formation control technology.
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Inspired by the consensus problem [6], early distributed
formation control methods are devised to enable agents to
reach a predefined formation at a predetermined location (see,
e.g, [7], [8]). The formation shape can be represented by
some predefined parameters. For example, a positive value
can govern the scale size of formations (see, e.g., [9], [10]).
Combining scale with rotation parameters, formation scaling
and rotation can be simultaneously achieved (see, e.g., [11],
[12]). Since scaling and rotation represent specific types of
affine transformation motion, the affine formation control ap-
proach employs a square matrix to govern the formation shape
that enables more types of formation variations, including
shear, reflection, and more (see, e.g., [13]–[15]). However,
despite these parameterized formation methods offering a wide
range of feasible formation variations, limited attention has
been given to the intermediate switching states between two
formations during the transformation. This is because many
studies (see, e.g., [9], [16]) often involve abrupt step changes in
achieving formation transformations. Consequently, there is a
need for more comprehensive investigations into time-varying
formation control technology to achieve smoother formation
variations.

Time-varying formation control provides smooth trajectories
when formation switches. It is especially suitable for formation
transformation and maneuvering in complex environments.
Distributed time-varying formation tracking control schemes
are designed in [17], [18], with assuming complete knowledge
of both the formation and its derivative information. When
the derivative of the desired formation is unknown, signum
functions can be used to achieve precisely time-varying for-
mation tracking (see, e.g., [19], [20]). Model uncertainties and
external disturbance are further covered in [21] by involving
radial basis function neural networks (RBFNNs). As for time-
varying formation shape variations, a centralized method is
proposed in [22], where scaling and rotation motions can
be achieved by manipulating the complex-Laplacian matrix
associated with the underlying graph. In time-varying affine
formation maneuver, when leaders are with constant velocities,
proportional-integral (PI) type control laws are developed
under both undirected [13], [23] and directed [24] graphs. As
for leaders with time-varying velocities, a distributed control
law for solving the formation tracking problem is introduced
in [14], where neighboring agents’ control inputs are required.
This controller is further studied for triple integrator systems
[25]. Moreover, the neighbors’ inputs are replaced by their
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historical information in [26], but where only bounded position
error can be achieved. Without neighbors’ inputs, the methods
proposed in [27] can achieve precise time-varying formation
tracking by employing signum functions, which, however,
also brings jitters into control input signals. In summary,
most leader-follower time-varying formation control methods
typically rely on global information about the desired dynamic
formation, but it is usually known only to a few leaders (see,
e.g., [7], [9], [13], [19]). The unavailability of this global
formation information to the followers results in challenges
related to formation stabilization and tracking. However, this
global desired formation information is implied in the relative
displacements of leaders. Therefore, it is possible to employ
distributed estimation techniques to extract key information
embedded in these relative displacements.

In [28], distributed estimators are introduced to obtain
the leader’s time-varying trajectory as the feedforward in
formation tracking controllers. It is shown that information
pertaining to the desired scaling size and overall rotation can
also be implicitly found in formation edges (see e.g., [9], [16]).
Distributed estimators are proposed for both constant [29]
and time-varying [30] formation scale parameters. For planar
formations, an estimator capable of simultaneously estimating
scale size and rotation parameters is presented in [16] under
the framework of affine formation control. A notable aspect
of estimating rotation and scaling parameters is that such
information can be fully contained within a single edge (a
pair of agents). However, when estimated parameters become
complex, an edge may only contain a portion of the desired
parameter information. For example, the affine transformation
matrix parameter that determines the formation shape in the
affine formation control approach. In the d-dimensional space,
it is known that the affine transformation matrix parameter
is determined by at least d + 1 agents (i.e., d edges) [13].
This indicates that achieving a comprehensive affine formation
parameters measurement requires gathering information from
multiple edges, thereby forming a system of linear equations.
This complex relationship brings challenges in the estimation
of intricate formation parameters.

In the past decade, some distributed algorithms for solving
the time-invariance system of linear equations have been pro-
posed. For cases with a unique solution, a projected consensus
algorithm is introduced in [31] that can enforce each agent’s
local solution to reach consensus by moving along the tangent
space of the corresponding local linear sub-equation. Then,
the projected consensus algorithm is extended to arbitrarily
initial values in [32], by adding a term that can track the
local manifold corresponding to the local linear sub-equation.
Furthermore, switching [33] and random [34] networks are
also studied in this problem. For time-invariant underdeter-
mined system of linear equations that has multiple solutions,
minimum l1-norm solution, and minimum l2-norm solution to
a prescribed point are studied in [35] and [36], respectively.
The time-invariant overdetermined system of linear equations
that has redundant row conditions is usually unsolvable, but
its least squares solution always exists. Discrete-time [37] and
continuous-time [38] distributed algorithms are introduced. A
distributed version of Arrow-Hurwicz-Uzawa flow is proposed

in [39] derived from the classical centralized form. Although
the distributed solution of the time-invariant linear equation
has been widely studied in the past several years, there is a
lack of research on the distributed solution of a system of
time-varying linear equations.

This paper studies the time-varying linear formation con-
trol problem of multi-agent systems. The proposed linear
formation control method enables more parameters than the
affine manner to describe the formation shape, providing a
broader flexible formation set for complex maneuver tasks.
In the linear formation control method, it is important to
note that the overall formation is governed by a time-varying
linear transformation matrix, which can be determined by the
positions of the leaders. An integrated leader-follower control
architecture is proposed for addressing followers’ time-varying
linear formation tracking problem. First, a distributed estimator
are proposed to estimate these time-varying formation shape
parameters through collaborative observation of leaders. The
essence of this estimator involves solving a system of time-
varying linear equations in a distributed manner, expressed as
A(t)x(t) = b(t). Second, a distributed estimator is derived to
obtain the time-varying formation translation parameters by
observing leaders’ positions. Third, using the outputs of those
estimators, a formation control law is developed for time-
varying linear formation tracking. Finally, an optimization-
based linear formation design method is introduced that cas-
cades the proposed time-varying formation architecture to
achieve flexible formation variations.

In summary, the main contributions of this paper are given
as follows.

1) A new distributed leader-follower formation method,
termed linear formation control, is proposed. In this
method, the desired formation is represented by a linear
transformation matrix determined by leaders’ positions. It
allows the multi-agent system to perform broader range
of formation variations than translation [7], scaling [10],
and affine [13] transformations.

2) Time-varying formation maneuvers are considered in this
paper. Moreover, the proposed formation control schemes
are also applicable to time-varying nominal configuration,
which is more challenging than studies on time-invariant
nominal configurations in most transformation-based for-
mation control approaches (see, e.g., [9], [14]).

3) The challenge of cooperatively identifying time-varying
linear formation parameters is reformulated as the prob-
lem of solving a system of time-varying linear equations
in a distributed manner. The proposed method requires
less dynamic feedforwards than the previous work [40].

The remainder of this paper is organized as follows. First,
some preliminaries are given in Section II. Time-varying
linear formation control architecture is proposed in Section III,
where we also address our primary control objective. Then,
two estimators are proposed in Section IV and Section V to
estimate time-varying formation shape and translation, respec-
tively. On the basis of the estimated formation parameters, a
time-varying linear formation tracking method is devised in
Section VI. Next, a simulation of time-varying linear formation

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2025.3540570

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on February 13,2025 at 03:29:08 UTC from IEEE Xplore.  Restrictions apply. 



AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2017) 3

is presented in Section VII. The last section concludes this
paper.

II. PRELIMINARIES

This section presents some notations and preliminary results
that will be used in this paper.

A. Notations
The operator ⊗ stands for the Kronecker product for matri-

ces. Denote the identity matrix with dimension n by In. We
use 1n and 0n to represents the all-one vector

[
1 ... 1

]T ∈
Rn and all-zero vector

[
0 ... 0

]T ∈ Rn, respectively. For
a vector y ∈ Rn, ∥y∥1 denotes the l1-norm of vector y.
For a matrix F ∈ Rm×n, ∥F∥∞, F+, and rank (F) denote
the ∞-norm, Moore-Penrose inverse1, and rank of the matrix
F, respectively. The vectorization of F is represented by
vec (F) =

[
fT1 , ..., fTn

]T
, where f i denotes the ith column of

F. A block-diagonal matrix is represented by diag {...}. The
symbol vec (·) means the vectorization of a matrix. Denote the
second smallest eigenvalue of a matrix by λ2 (·). For vectors
p1, ..., pn, span {p1, ..., pn} is used to denote the linear span
of these vectors. Let sgn (·) denote the signum function. For
a vector z ∈ Rn, sgn (z) =

[
sgn (z1) · · · sgn (zn)

]T
. For

c > 0 and a closed set Γ, Bc := {x ∈ Rn : ∥x∥Γ < c}, where
∥x∥Γ = infy∈Γ ∥x − y∥2 is the point-to-set distance from x to
Γ.

B. Graph Theory [42], [43]
A directed graph G is a pair (V ,E), where V = {v1, ..., vn}

is a non-empty finite set of nodes and E ⊆ V × V is a
set of ordered pairs of nodes, called edges. An edge (vj , vi)
represents the communication path from node vj to node vi.

The Laplacian matrix L ∈ Rn×n is defined as

[L]ij =


0 (vj , vi) /∈ E
−1 (vj , vi) ∈ E

−
∑

j∈N i
[L]ij i = j

,

where N i = {j ∈ V : (vj , vi) ∈ E} is a set containing all
neighbors of node vi. For an undirected connected graph, the
Laplacian matrix is positive semi-definite and has only one
zero eigenvalue.

C. Solutions of A System of Linear Equations [44]
A system of linear equations can be written in the following

form
Ax = b, (1)

where A ∈ Rr×c, b ∈ Rr, x ∈ Rc. The solutions of the
system of linear equations (1) are identified based on the rank
conditions of A and b, given by

1) Ax = b has only one solution, if rank
([
A b

])
=

rank(A) = c;
2) Ax = b has infinite solutions, if rank

([
A b

])
=

rank(A) < c;
3) Ax = b has no solution, if rank(A) < rank

([
A b

])
.

1For a matrix F ∈ Rm×n, the Moore-Penrose inverse of F is defined
as F+ ∈ Rn×m. Moreover, if rank(F) = m, it has FF+ = Im. If
rank(FT) = n, it has and F+F = In. [41]

D. Nonsmooth Analysis [45]
Consider the following differential equation:

ẋ(t) = f (t, x(t)) , x(0) = x0, t > 0, (2)

where f : R× Rq → Rq is measurable and essentially locally
bounded. Let F [f (t, x(t))] denote the Filippov set-valued map,
such that

F [f (t, x(t))] ≜
⋂
δ>0

⋂
u(S)=0

co {f (t,Bδ (x) \S)} ,

where
⋂

u(S)=0 denotes the intersection over all sets S of
Lebesgue measure zero; co denotes the convex closure.

The Filippov solution of (2) is defined by an absolutely
continuous vector function x ∈ Rq on [0, τ ], such that

ẋ(t) ∈ F [f (t, x(t))] for almost all t ∈ [0, τ ] .

For a locally Lipschitz function W (x(t)): Rq → R, the
generalized gradient of W (x(t)) at x(t) is defined as

∂W (x) ≜ co
{
lim
w→x

∇W (x) : w /∈ Ωw ∪ S
}
,

where co denotes the convex hull; Ωw is the set of points in
which W (x(t)) is not differentiable; S is a set of measure zero
that can be arbitrarily chosen so as to simplify the calculation.
The set-valued Lie derivative of W (x(t)) with respect to (2)
at x(t) is defined by

LEq.(2)W (x) ≜
⋂

ξ∈∂W (x)

ξTF [f] .

E. Some Useful Lemmas
Lemma 1 ( [46]): For the system ẋ = f (t, x), if there exists

a C1 function V (x) ≥ 0, such that V̇ (x) ≤ −k1V (x) −
k2V (x)q , where k1 > 0, k2 > 0, and 0 < q < 1, then the
closed-loop system is finite-time stable, and the settling time
is calculated by

T =
1

k1 (1− q)
ln

k1V
1−q (x(0))− k2

k2
.

Lemma 2 ( [47]): For the system ẋ = f (t, x), if there exists
a C1 function V (x) ≥ 0, such that V̇ (x) ≤ −k3V (x)q , where
k3 > 0, and 0 < q < 1, then the closed-loop system is finite-
time stable, and the settling time is calculated by

T =
V 1−q (x(0))
k3 (1− q)

.

Lemma 3 (Corollary 24 of [48]): Consider the cascade-
connected system {

ẋ1 = f1 (t, x1, x2)
ẋ2 = f2 (t, x2)

, (3)

where f1 : R× Rn1 × Rn2 → Rn1 and f2 : R× Rn2 → Rn2

are Lipschitz continuous. f1 (·, 0n1
, 0n2

) ≡ 0n1
, f2 (·, 0n2

) ≡
0n2

. Then the equilibrium (x1, x2) = (0n1
, 0n2

) is uniformly
globally asymptotically stable2 (UGAS) for (3) if and only if
the following three conditions are satisfied:

2A system is UGAS if it is uniformly globally stable, and uniformly
globally attractive [48], [49].
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Leader dynamics (5)

lu

Follower dynamics (5)

fu
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Fig. 1. Information flow of the proposed estimation-based time-varying linear formation control schemes. ul, and uf denotes the control inputs of
all leaders and followers, respectively.

1) The equilibrium x1 = 0n1
is UGAS for ẋ1 =

f1 (t, x1, 0n2
).

2) The equilibrium x2 = 0n2
is UGAS for ẋ2 = f1 (t, x2).

3) All solutions of (3) are t0-uniformly bounded3, i.e., BS =
Rn1 × Rn2 .

III. PROBLEM STATEMENT

A. Time-varying Linear Formation Control Architecture

First, we introduce some definitions in the time-varying
linear formation control architecture to describe desired for-
mations during maneuvers.

Definition 1 (Nominal configuration): The nominal config-
uration {ri (t)}ni=1, ri (t) ∈ Rf is a set of pre-defined time-
varying vectors corresponding to each agent.

Definition 2 (Augmented nominal configuration): r̄i (t) =[
rTi (t) 1

]T ∈ Rf+1 is called the augmented nominal con-
figuration.

Definition 3 (Target formation): The target formation
p∗i (t) ∈ Rd is the desired position of agent i, with d ≤
f . It is a linear transformation of the augmented nominal
configuration, i.e.,

p∗
i (t) = Ā (t) r̄i (t) = A (t) ri (t) + b (t) , (4)

where A (t) ∈ Rd×f is the linear transformation matrix;
b (t) ∈ Rd; Ā (t) =

[
A (t) b (t)

]
∈ Rd×(f+1). A (t) ri (t)

and b (t) represent the shape and translation of formation,
respectively. All possible target formations constitute the fol-
lowing set T (r̄ (t)), which exactly is the image space of the
linear transformation Ā (t), i.e.,

T (r̄ (t)) =
{

p∗ (t) ∈ Rdn : p∗ (t) = (In ⊗ Ā (t))r̄ (t)
}
,

where

p∗ (t) =
[
(p∗1 (t))

T
. . . (p∗n (t))

T
]T

,

r̄ (t) =
[
r̄T1 (t) . . . r̄Tn (t)

]T
.

3Let x0 ∈ Rn. The solutions with initial state x0 are t0-uniformly bounded
if there exist a const c > 0 such that x

(
R≥t0 , t0, x0

)
⊂ Bc (0) for all

t0 ∈ R. The set of initial states giving rise to t0-uniformly bounded solutions
is defined as ( [48])

BS =
{

x0 ∈ Rn : (∃c > 0) (∀t0 ∈ R) x
(
R≥t0 , t0, x0

)
⊂ Bc (0)

}
.

B. Problem Description

Consider a group of n agents in Rd and a time-varying
nominal configuration in Rf , where d ∈ N+ and n ≥ f + 2,
f ≥ d, f ∈ N+. The leader set V l ⊂ V consists nl agents,
and the remaining nf = n − nl agents form the follower set
Vf ⊂ V , where V denotes the set that comprises all agents.

Each agent satisfies the following single-integrator dynam-
ics:

ṗi (t) = ui (t) , i = 1, ..., n, (5)

where ui (t) ∈ Rd is control input, and pi (t) ∈ Rd represents
the position.

The graph G denotes the communication topology among
agents. This paper considers the first nl agents are leaders
without losing generality. The Laplacian matrix L associated
with the graph G is defined in the following form according
to the partition of leaders and followers:

L =

[
Lll Llf

Lfl Lff

]
.

Let Gf denotes the subgraph of G, consisting of all follow-
ers. The corresponding Laplacian matrix of Gf is represented
by Lf . N i and N fi denote the neighbor sets of the agent i
in G, and Gf , respectively.

In this paper, only leaders know the time-varying augmented
linear transformation matrix Ā (t). Followers can communi-
cate internally, but they cannot communicate with leaders. The
only available information for followers is leaders’ position
measurements. Followers can estimate Ā (t) using these mea-
surements for achieving time-varying formation tracking. Let
xi (t) and yi (t) denote the estimations of the formation shape
x∗ (t) = vec (A (t)) and translation y∗ (t) = b (t), respectively.
The primary objective of this study is to develop followers’
cooperative estimation laws to obtain the precise x∗ (t) and
y∗ (t) for achieving time-varying target formation tracking, i.e.,

lim
t→∞

[xi (t)− x∗ (t)] = 0df , (6)

lim
t→∞

[yi (t)− y∗ (t)] = 0d, (7)

lim
t→∞

[
pi (t)− Ā (t) r̄i (t)

]
= 0d, (8)

for ∀i ∈ Vf , where Ā (t) r̄i (t) =
(
rTi (t)⊗ Id

)
x∗ (t)+ y∗ (t).

In the following sections, we will achieve these three goals
(6)-(8) in turn. For distributed algorithms, it is necessary to
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assume that the graph is connected, so we make the following
assumption.

Assumption 1: The subgraph Gf is undirected and con-
nected.

Fig. 1 shows the proposed comprehensive set of time-
varying linear formation control schemes. A linear formation
planning method is given in Appendix A to generate x∗(t),
y∗(t), and leaders’ desired trajectories. For followers, their
shape estimator, translation estimator, and tracking controller
will be explained in detail in Section IV, V, and VI, re-
spectively. Since the designed trajectories of leaders can be
informed to leaders, we also make the following assumption
for leaders.

Assumption 2: Leaders are equipped with appropriate feed-
back controllers that can let leaders track their desired trajec-
tories, i.e.,

lim
t→∞

p̃i(t) = 0d, ∀i ∈ V l.

where the leader’s position error is defined as p̃i(t) ≜ pi(t)−
p∗
i (t), ∀i ∈ V l.

C. Uniqueness of Target Formation
Since the proposed time-varying linear formation control

architecture has a leader-follower structure, it is necessary
to ensure that leaders can uniquely determine the target
formation. Therefore, the concept of “linear localizability” is
introduced here.

Definition 4 (Linear localizability): For the nominal con-
figuration {ri(t)}ni=1 of n agents, if any feasible p∗f (t) can
be uniquely determined by p∗l (t), the nominal configuration
{ri(t)}ni=1 is said to be linearly localizable, where p∗

l (t) and
p∗
f (t) denote the target formations (determined by (4)) of

leaders and followers, respectively.

p∗l (t) =
[
(p∗1 (t))

T
. . .

(
p∗nl

(t)
)T]T ,

p∗
f (t) =

[(
p∗nl+1 (t)

)T
. . . (p∗n (t))

T
]T

.

Remark 1: If the nominal formation lies in the same
Euclidean space as that of agents’ coordinates (i.e., f = d),
the concept of linear localizability is the same as the affine
localizability introduced in [14]. However, high-dimensional
nominal formations are allowed in linear localizability, which
implies linear localizability is more general in terms of for-
mation representations.

This section shows that linear localizability for a nominal
configuration can be guaranteed by the following assumption.

Assumption 3: For the time-varying nominal configuration
{ri(t)}ni=1, ri(t) ∈ Rf , it is assumed that {ri(t)}i∈Vl

linearly
span Rf , i.e,

span {r1(t), ..., rnl
(t)} = Rf .

A necessary condition for Assumption 3 is nl ≥ f + 1,
which implies that the minimum number of leaders is f + 1.

Remark 2: In order to generate time-varying {ri(t)}ni=1 that
satisfies Assumption 3. For a {ri(0)}ni=1 that meets Assump-
tion 3, one can let the member of {ri(t)}ni=1 move alone its
corresponding linear sub-spaces, i.e., periodically scaling as

we selected in the simulation (Section VII-A). Alternatively,
it is also tenable to maintain linear spatial complementary
relations among {ri(0)}ni=1 by multiplying the same time-
varying f -dimensional rotation matrix.

To begin, we introduce a lemma adapted from the affine
formation control [13], [14].

Lemma 4: For the nominal configuration {ri(t)}ni=1, ri ∈
Rf , the following conditions 1)-3) are equivalent.

1) {ri(t)}ni=1 linearly span Rf .
2) rank(R̄(t)) = f + 1, where

R̄(t) =
[
R̄T

l (t) R̄T
f (t)

]T
∈ Rn×(f+1),

R̄l(t) =
[
r̄1(t) . . . r̄nl

(t)
]T ∈ Rnl×(f+1),

R̄f (t) =
[
r̄nl+1(t) . . . r̄n(t)

]T ∈ R(n−nl)×(f+1).

3) dim (T (r̄(t))) = (f + 1)d.
Proof: See Lemma 2 of [50]. □
Now, we introduce the following theorem to formally give

the necessary and sufficient conditions for linear localizability.
Theorem 1: The time-varying nominal configuration

{ri(t)}ni=1, ri(t) ∈ Rf is linearly localizable, if and only if
{ri(t)}ni=1 satisfies Assumption 3. Further,

p∗f (t) = (R̄f (t)⊗ Id)(R̄
+
l (t)⊗ Id)p∗

l (t).

Proof: In this proof, we will omit argument t when it is
clear that we are referring to ri(t), p∗l (t), p∗f (t), R̄l(t), R̄f (t),
and Ā(t).

(Sufficiency) Note that p∗l is determined by the linear
transformation Ā, such that

p∗
l =

(
Inl

⊗ Ā
)

r̄l = (R̄l ⊗ Id)vec(Ā). (9)

where rl =
[
rT1 . . . rTnl

]T
. If {ri(t)}i∈Vl

linearly span Rf ,
according to Lemma 4, it can be derived that rank(R̄l) = f+1
and nl ≥ f + 1. Then, vec(Ā) can be uniquely obtained by

vec(Ā) = (R̄+
l ⊗ Id)p∗l .

Then, by using the above equality, followers’ target positions
are uniquely computed by

p∗f =
(
Inf

⊗ Ā
)

r̄f =(R̄f ⊗ Id)vec(Ā)

=(R̄f ⊗ Id)(R̄
+
l ⊗ Id)p∗

l ,

where r̄f =
[
r̄Tnl+1 . . . r̄Tn

]T
. The linear localizability is

proven.
(Necessity) If {ri}i∈Vl

do not linearly span Rf , it means
rank(R̄l) < f + 1. Then, in view of Section II-C, we know
that rank(R̄l) < f +1 does not satisfy the rank conditions for
the system of linear equations (9) having the unique solution
about vec(Ā). Hence, vec(Ā) can not be located, nor does p∗f .

■

IV. COOPERATIVE LINEAR FORMATION SHAPE
ESTIMATOR DESIGN

This section describes a distributed method for followers to
cooperatively estimate the formation shape x∗(t). This estima-
tion is achieved through measuring relative displacements of
leaders. The displacement measurability is defined as follows.
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iv jv

kv

Fig. 2. The subgraph corresponding to the triplet τji,ki.

Definition 5 (Displacement measurability): In the graph
G, if there exists a triplet4 τji,ki, we say the displacement
corresponding to the edge (vj , vk) is measurable by agent i.

Consider nf1 followers are capable of measuring leaders’
edges, forming the set Vf1. The remaining nf2 followers con-
stitute the set Vf2. It satisfies Vf = Vf1∪Vf2, Vf1∩Vf2 =
∅, nf1 + nf2 = nf , nf1 ∈ N+, nf2 ∈ N. Without losing
generality, this paper considers that the first nf1 followers can
measure leaders’ edges.

Let xi(t) ∈ Rdf represent the local estimation of x∗(t)
for follower i. This local estimation satisfies the following
integrator dynamics:

ẋi(t) = µi(t), i ∈ Vf , (10)

where µi(t) ∈ Rdf .

A. Observability Analysis

This subsection shows that the following Assumption 4 is
the sufficient condition for ensuring that x∗(t) is available by
followers.

Assumption 4: In the time-varying nominal configuration
{ri(t)}ni=1, ri(t) ∈ Rf , all leaders’ measurable edge displace-
ments linearly span Rf , i.e.,

span {..., rjk(t), ...} = Rf , for all Gs (τji,ki) ⊂ G,

where i ∈ Vf1; j, k ∈ V l; rjk(t) = rj(t)− rk(t).
It is noted that Assumption 3 is the necessary condition

for Assumption 4. Let mi denote the number of leaders’
edge displacements that follower i can measure, where i ∈
Vf1. These measurable mi edge displacements establish the
following time-varying linear sub-equation

Mi(t)z(t) = ξi(t), (11)

where Mi(t) ∈ Rdmi×df , z(t) ∈ Rdf , ξi(t) ∈ Rmi ,

Mi(t) =

[
· · ·

(
rTjk(t)⊗ Id

)T

· · ·
]T

, j, k ∈ V l ∩N i,

ξi(t) =
[
. . . pTjk(t) . . .

]T
, j, k ∈ V l ∩N i,

pjk(t) = pj(t)− pk(t).

According to the size of Mi(t), it is noticed that dmi may
be smaller than df . Then, in view of Section II-C, z(t) may
not be unique determined by (11), i.e., x∗(t) is only one
element of the solution of (11). This observation implies that

4The triplet τji,ki admits a subgraph Gs

(
τji,ki

)
consisting of three nodes

and two edges, such that Gs

(
τji,ki

)
=

(
Vs

(
τji,ki

)
,Es

(
τji,ki

))
⊆ G,

where Vs
(
τji,ki

)
= {vi, vj , vk}, Es

(
τji,ki

)
= {(vj , vi), (vk, vi)}.

Please refer to Fig. 2.

the target formation shape x∗(t) typically cannot be located
by the measurements from a single follower i through (11).

All followers in Vf1 admit the following time-varying linear
equation

M(t)z(t) = ξ(t), (12)

where M(t) ∈ Rm×df ; ξ(t) ∈ Rm;
∑

i∈Vf1
mi = m. It

follows

M(t) =

 Mnl+1(t)
...

Mnl+nf1
(t)

 , ξ(t) =

 ξnl+1(t)
...

ξnl+nf1
(t)

 .

If Assumption 4 is satisfied, it has rank (M(t)) = df .
In view of Section II-C, Eq.(12) must have a unique or no
solution. Since all leaders’ positions are governed by the same
formation shape parameter x∗(t), there must exist the solution
of (12). Therefore, it is concluded that (12) has the unique
solution x∗(t), i.e., z(t) = x∗(t).

B. Estimator Design
Based on the analysis in the previous subsection, it is

observed that the cooperative estimation of x∗(t) essentially
involves solving the system of time-varying linear equations
(12) in a distributed manner. To facilitate it, we make two
assumptions about the boundness of the following variables:

Assumption 5: The derivative of x∗(t) is bounded by
||ẋ∗(t)||2 < δ1, where δ1 > 0.

Assumption 6: The leaders’ velocity is bounded by
||ṗi(t)||2 < δ2, ∀i ∈ V l, where δ2 > 0.

Let Mi(t) ≜ {z(t) ∈ Rn : Mi(t)z(t) = ξi(t)} repre-
sent the time-varying manifold corresponding to the linear
sub-equation (11). Two sub-objectives for local estimations
{xi(t)}i∈Vf

are given as follows:
1) For each follower belonging to Vf1, the local estimation

xi(t) converge to its time-varying manifold Mi(t).
2) For all followers, their local estimations {xi(t)}i∈Vf

reach consensus.
The first sub-objective ensures that each local estimation

of the follower belonging to Vf1 satisfies its corresponding
time-varying local linear sub-equation (11). The second sub-
objective ensures that all followers admit the same local
solution to the system of linear equations (12). If local
estimations {xi(t)}i∈Vf

fulfill the above two sub-objectives
simultaneously, it concludes that every local estimation is the
solution of (12). To achieve those two sub-objectives, we
propose the following distributed algorithm to solve (12) and
obtain x∗(t) cooperatively.

µi(t) =

{
gi(t) + f i(t) i ∈ Vf1

gi(t) i ∈ Vf2
, (13)

f i(t) =− [α+ βi(t)]MT
i (t)

[
Mi(t)M

T
i (t)

]−1
[Mi(t)xi(t)− ξi(t)]

− γiM
T
i (t)

[
MiM

T
i (t)

]−1
sgn [Mi(t)xi(t)− ξi(t)]

− MT
i (t)

[
Mi(t)M

T
i (t)

]−1
Ṁi(t)xi(t),

(14)
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gi(t) = −kΠi(t)sgn

Πi(t)
∑

j∈N f
i

(xi(t)− xj(t))

 , (15)

where

Πi(t) =

{
Pi(t) i ∈ Vf1

Idf i ∈ Vf2
,

βi(t) =

{∥∥Ṗi(t)
∥∥
∞ i ∈ Vf1

0 i ∈ Vf2
,

α > 0, γi > 2miδ2, and k > δ1. Pi(t) ∈ Rdf×df denotes the
orthogonal projection matrix, i.e.,

Pi(t) = Idf − MT
i (t)

[
Mi(t)MT

i (t)
]−1

Mi(t).

If we consider a non-zero vector v ∈ Rn, its projection onto
the tangent space of the manifold Mi(t) is denoted by Pi(t)v.

In (13), terms f i(t) and gi(t) are designed to make local es-
timations converge to time-varying manifolds {Mi(t)}i∈Vf1

and reach consensus, respectively. Now, we state the following
theorems.

Theorem 2: Under Assumptions 2 and 6, for followers
belonging to Vf1, the distributed algorithm (13) can let the
local estimation xi(t) with dynamics (10) to converge to the
time-varying manifold Mi(t) in finite time Ti, i.e.,

lim
t→Ti

[Mi(t)xi(t)− ξi(t)] = 0dmi
, ∀i ∈ Vf1,

where

Ti =
1

2 (γi − 2miδ2)
ln

(γi − 2miδ2)V
1
2
iε (0)− 2α

2α
,

Viε(t) =
1

2
εTi (t)εi(t),

εi(t) = Mi(t)xi(t)− ξi(t).

Proof: The proof will be accomplished by analyzing the
convergence of εi(t), which represents the convergence error
to the time-varying manifold Mi(t). The dynamics of εi(t)
is given by

ε̇(t) = Ṁi(t)xi(t) + Mi(t)µi(t)− ξ̇i(t). (16)

We consider a Lyapunov function candidate Viε(t) =
1
2ε

T
i (t)εi(t), whose set-valued Lie derivative with respect to

(16) is obtained by

LEq.(16)Viε(t) =ε
T
i (t)F {ε̇i(t)} .

Note that gi(t) lies in the null space of Mi, i.e.,
Mi(t)gi(t) ≡ 0mi . It gives

LEq.(16)Viε(t) =− (α+ βi(t)) ∥εi(t)∥22
− εTi (t)F

{
γisgn (εi(t)) + ξ̇i(t)

}
.

According to Assumption 6, it is also known
that

∥∥∥ξ̇i(t)∥∥∥
2

≤ 2miδ2. Therefore, for ∀h ∈

−εTi (t)F
{
γisgn (εi(t)) + ξ̇i(t)

}
, it has h ≤

− (γi − 2miδ2) ∥εi(t)∥1. In view of Section II-D,
V̇iε(t) ∈ LEq.(16)Viε(t) for almost all t ≥ 0. It gives

maxLEq.(16)Viε(t) ≤ −2αViε(t)− 2 (γi − 2miδ2)V
1
2
iε (t).

In view of Lemma 1, it follows εi(t) → 0dmi
, t → Ti,

which implies that xi(t) will converge to Mi(t) in finite time,
i.e., Mi(t)xi(t) → ξi(t), t → Ti. ■

Before further analysis, we introduce the following lemma
to conclude the positive definiteness of a matrix.

Lemma 5: Under Assumptions 1 and 4, the matrix(
Idfnf

−Π(t)
)
+ L̄f is positive definite, where L̄f = Lf ⊗

Idf , Π(t) = diag {Πnl+1(t), ...,Πn(t)}.
Proof: See Appendix B. □
Now, based on Lemma 5, the consensus performance of

local shape estimation xi(t) is analyzed in the following
theorem.

Theorem 3: Under Assumptions 1-6, for all followers,
the local shape estimations {xi(t)}i∈Vf

can reach consensus
under the algorithm (13), i.e.,

lim
t→∞

[xi(t)− xj(t)] = 0df , ∀i, j ∈ Vf .

Proof: In this proof, we will omit argument t when it is
clear that we are referring to Mi(t), Pi(t), Π(t), βi, f i(t),
gi(t), µi(t), xi(t), x∗(t), and ξi(t).

The proof will be accomplished once the following steps
are realized.

1) Derive the estimation error dynamics x̃i form (13) and
(10).

2) Simplify the estimation error dynamics x̃i by using the
result from Theorem 2.

3) A Lyapunov function candidate is considered to analyze
the convergence of x̃i.

For step 1), the estimation error is defined as

x̃i ≜ xi − x∗.

We know that x∗ also satisfies each local linear sub-
equation, i.e., Mix∗ = ξi. It follows that

Ṁix∗ + Miẋ∗ = ξ̇i.

Based on the above equality of x∗, let us use x̃i to replace
xi in f i. It has

f i =− (α+ βi)MT
i

(
MiMT

i

)−1
(Mixi − Mix∗)

− γiMT
i

(
MiMT

i

)−1
sgn (Mixi − Mix∗)

− MT
i

(
MiMT

i

)−1
Ṁix̃i − MT

i

(
MiMT

i

)−1
Ṁix∗

=− (α+ βi) (In − Pi) x̃i

− γiMT
i

(
MiMT

i

)−1
sgn (Mix̃i)

− MT
i

(
MiMT

i

)−1
Ṁix̃i

− MT
i

(
MiMT

i

)−1
(

Miẋ∗ + ξ̇i
)

=− (α+ βi) (In − Pi) x̃i

− γi (In − Pi)MT
i

(
MiMT

i

)−1
sgn (Mix̃i)

− (In − Pi)MT
i

(
MiMT

i

)−1
Ṁix̃i

+ (In − Pi) ẋ∗ − (In − Pi)MT
i

(
MiMT

i

)−1
ξ̇i,

where the following relation is used in the last equality:

(In − Pi)MT
i

(
MiMT

i

)−1
= MT

i

(
MiMT

i

)−1
.
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Then, let us use x̃i to replace xi in gi. It has

gi =− kΠisgn

Πi

∑
j∈N f

i

(x̃i − x̃j)

 .

Now, for i ∈ Vf1, the dynamics of x̃i is obtained by

˙̃xi =ẋi − ẋ∗

=µi − ẋ∗

=− (α+ βi) (In −Πi) x̃i

− (In −Πi)MT
i

(
MiMT

i

)−1
Ṁix̃i

− γi (In −Πi)MT
i

(
MiMT

i

)−1
sgn (Mix̃i)

− (In −Πi)MT
i

(
MiMT

i

)−1
ξ̇i

−Πiẋ∗ − kΠisgn

Πi

∑
j∈N f

i

(x̃i − x̃j)


(17)

For step 2), in view of Theorem 2, considering i ∈ Vf1

when t > Ti, it has

Mixi − ξi = 0mi
, ∀i ∈ Vf1. (18)

According to (18) and the fact Mix∗ = ξi, when t > Ti, it
follows

Mix̃i = 0mi
, ∀i ∈ Vf1. (19)

Further, for any follower i ∈ Vf , it has

(Idf −Πi) x̃i = 0mi , (20)

which implies
x̃i = Πix̃i. (21)

We consider the derivative of (21). It follows

(Idf −Πi) ˙̃xi =Π̇ix̃i. (22)

By using (19) and multiplying both sides of (17) by
(Idf −Πi), it is obtained that

(Idf −Πi) ˙̃xi =− (In − Pi)MT
i

(
MiMT

i

)−1
Ṁix̃i

− (In − Pi)MT
i

(
MiMT

i

)−1
ξ̇i.

In view of the above equation and (22), we have

Π̇ix̃i =− (Idf −Πi)MT
i

(
MiMT

i

)−1
Ṁix̃i

− (Idf −Πi)MT
i

(
MiMT

i

)−1
ξ̇i.

Then, by multiplying both sides of the above equation by
(Idf −Πi), it is obtained that

(Idf −Πi) Π̇ix̃i =− (Idf −Πi)MT
i

(
MiMT

i

)−1
Ṁix̃i

− (In −Πi)MT
i

(
MiMT

i

)−1
ξ̇i.

(23)

Now, substituting (19) and (23) into (17), we obtain the
error dynamics as following for i ∈ Vf1:

˙̃xi =− (α+ βi) (Idf −Πi) x̃i + (Idf −Πi) Π̇ix̃i

−Πiẋ∗ − kΠisgn

Πi

∑
j∈N f

i

(x̃i − x̃j)

 .
(24)

In view of the fact (Idf −Πi) = 0df for i ∈ Vf2, it is
verified that (24) is satisfied by every follower i ∈ Vf .

Then, the error dynamics (24) is rewritten into the vector
form, i.e.,
˙̃x =−

(
αIdfnf

+ B
) (

Idfnf
−Π

)
x̃ −

(
Idfnf

−Π
)
Π̇x̃

−Πχ̇− kΠsgn
(
ΠL̄f x̃

)
,

(25)

where

L̄f =Lf ⊗ Idf

x̃ =
[
x̃Tnl+1 · · · x̃T

n

]T
,

χ̇ =
[
(ẋ∗)T · · · (ẋ∗)T

]T
,

Π =diag (Πnl+1, · · · ,Πn) ,

B =diag (βnl+1, ..., βn)⊗ Idf .

For step 3), we consider a Lyapunov function candidate

Vx(t) =
1

2
x̃TL̄f x̃.

It has Vx(t) > 0 except for the set of equilibrium{
x̃ ∈ Rdfnf |L̄f x̃ = 0

}
. The set-valued Lie derivative of Vx(t)

with respect to (25) is given by

LEq.(25)Vx(t) =x̃TL̄fF
{
˙̃x
}

=−
(
αIdfnf

+ B
)

x̃TL̄f

(
Idfnf

−Π
)

x̃
− x̃TL̄f

(
Idfnf

−Π
)
Π̇x̃

− x̃TL̄fΠχ̇− kx̃TL̄fF
{
Πsgn

(
ΠL̄f x̃

)}
.

According to Assumption 5, we also know
∥ẋ∗∥1 < δ1. Therefore, for ∀h ∈ −x̃TL̄fΠχ̇ −
kx̃TL̄fF

{
Πsgn

(
ΠL̄f x̃

)}
, it has

h ≤− (k − δ1)

n∑
i=1

∥∥∥∥∥∥Πi

∑
j∈N f

i

(x̃i − x̃j)

∥∥∥∥∥∥
1

≤− (k − δ1)
∥∥ΠL̄f x̃

∥∥
1
.

In view of Section II-D, V̇x(t) ∈ LEq.(25)Vx(t) for almost
all t ≥ 0. It gives

maxLEq.(25)Vx(t)

≤− x̃T
(
αIdfnf

+ B − Π̇
) (

Idfnf
−Π

)
L̄f x̃

− (k − δ1)
∥∥ΠL̄f x̃

∥∥
1
.

Note that αIdfnf
+ B − Π̇ is positive definite, because

one observes that all eigenvalues of αIdfnf
+ B − Π̇ are

positive using the Gerschgorin disk theorem [41]. We also
know k > δ1. Further, in view of Lemma 5, we know that both(
Idfnf

−Π
)

and L̄f are positive semi-definite. It concludes
V̇x(t) ≤ 0.

When V̇x(t) = 0, it holds the following two conditions(
kIdfnf

+ B − Π̇
) (

Idfnf
−Π

)
L̄f x̃ =0dfnf

,

ΠL̄f x̃ =0dfnf
.

There is no non-zero vector ϕ = L̄f x̃ that satisfies both(
Idfnf

−Π
)
ϕ = 0dfnf

and Πϕ = 0dfnf
, because the
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corresponding null space of
(
Idfnf

−Π
)

and Π are comple-
mentary. Therefore, when V̇x = 0, it must have L̄f x̃ = 0dfnf

,
which implies shape estimation errors {x̃i}i∈Vf

can reach
consensus, i.e., x̃i(t) − x̃j(t) → 0f , t → ∞, ∀i, j ∈ Vf .
Furthermore, we have xi(t)−xj(t) → 0f , t → ∞, ∀i, j ∈ Vf .
It means local shape estimations will also reach the consensus.
The proof is completed. ■

In view of Theorems 2 and 3, we know that local estima-
tions {xi(t)}i∈Vf

will converge to their corresponding time-
varying manifolds Mi(t) in finite time and reach consensus
eventually. It implies that local estimation xi(t) is able to
achieve the designed two sub-objectives. Therefore, these local
estimations can cooperatively obtain the unique solution of the
time-varying linear equation (12). Here, we have the following
proposition to conclude the performance of the estimator (13).

Proposition 1: Under Assumptions 1-6, for all followers, the
estimator (13) can let xi(t) with the dynamics (10) to track
x∗(t), i.e.,

lim
t→∞

[xi(t)− x∗(t)] = 0df , ∀i ∈ Vf .

V. COOPERATIVE FORMATION TRANSLATION ESTIMATOR
DESIGN

This section describes a distributed method for followers
to cooperatively estimate the formation translation y∗(t). We
make the following assumption regarding the boundness of the
variable.

Assumption 7: The derivative of y∗(t) is bounded by
||ẏ∗(t)||2 < δ3, where δ3 > 0.

Let yi(t) ∈ Rdf represent the local estimation of y∗(t) for
follower i. It satisfies the following integrator dynamics

ẏi(t) = ηi(t), i ∈ Vf , (26)

where ηi(t) ∈ Rd is designed as

ηi(t)

=− σ1∣∣∣N l
i

∣∣∣
∑
j∈N l

i

(
yi(t)− pj(t) +

(
rTj (t)⊗ Id

)
xi(t)

)

− σ2∣∣∣N l
i

∣∣∣ sgn
 ∑
j∈N l

i

(
yi(t)− pj(t) +

(
rTj (t)⊗ Id

)
xi(t)

)
− σ3sgn

 ∑
j∈N f

i

(
yi(t)− yj(t)

) ,

(27)
where σ1 > 0, σ2 > nfδ3, σ3 > 0.

The translation estimation error is defined as

ỹi(t) ≜ yi(t)− y∗(t) = yi(t)− p∗j (t) +
(
rTj (t)⊗ Id

)
x∗(t),

where j ∈ V l denotes any one leader.

The error dynamics of translation estimation are given by

˙̃yi(t)
=ηi(t)− ẏ∗i (t)

=− σ1∣∣∣N l
i

∣∣∣
∑
j∈N l

i

(
ỹi(t)− p̃j(t) +

(
rTi (t)⊗ Id

)
x̃i(t)

)

− σ2∣∣∣N l
i

∣∣∣ sgn
 ∑
j∈N l

i

(
ỹi(t)− p̃j(t) +

(
rTj (t)⊗ Id

)
x̃i(t)

)
− σ3sgn

 ∑
j∈N f

i

(
ỹi(t)− ỹj(t)

)− ẏ∗i (t).

(28)
Now, we define the following cascaded time-varying sys-

tems:
Σ1 : ˙̃y = ϱ1 (t, ỹ, p̃l, x̃) , (29)

Σ2 :

{
˙̃pl =ϱ21 (t, p̃l)
˙̃x =ϱ22 (t, x̃)

, (30)

where Σ1 represents the error dynamics of translation estima-
tion. Σ2 comprises dynamics of leaders’ position error and
shape estimation error.

We first study the stability of the system Σ1 under the
condition that (p̃l, x̃) =

(
0dnl

, 0dfnf

)
. Then, Σ1 becomes

˙̃y(t) = ϱ1
(
t, ỹ, 0dnl

, 0dfnf

)
. (31)

Furthermore, error dynamics of translation estimation (28)
becomes

˙̃yi(t) =− σ1ỹi(t)− σ2sgn (ỹi(t))

− σ3sgn

 ∑
j∈N f

i

(
ỹi(t)− ỹj(t)

)− ẏ∗i (t).

Thus, eq.(31) is expressed as

˙̃y(t) =− σ1ỹ(t)− σ2sgn (ỹ(t))

− σ3sgn
(
L̂f ỹ(t)

)
− κ̇(t),

(32)

where L̂f = Lf ⊗ Id, and

ỹ(t) =
[
ỹTnl+1(t) · · · ỹTn (t)

]T
,

κ̇(t) =
[
(ẏ∗(t))T · · · (ẏ∗(t))T

]T
.

Theorem 4: Under Assumptions 1 and 2, the translation
estimation error ỹi with the dynamics described by (32) will
reach consensus in finite time TLy , i.e.

lim
t→TLy

[
ỹi(t)− ỹj(t)

]
= 0d, ∀i, j ∈ Vf ,

where

TLy =
V

1
2

Ly (0)

2σ3λ2 (Lf )
,

VLy(t) =
1

2
ỹT(t)L̂f ỹ(t).

Proof: We consider the Lyapunov function candidate
VLy(t) = 1

2 ỹT(t)L̂f ỹ(t). It has VLy(t) > 0 except for the
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set of equilibrium
{

ỹ ∈ Rdnf |L̂f ỹ = 0
}

. The set-valued Lie
derivative of VLy(t) with respect to (32) is given by

LEq.(32)VLy(t)

=ỹT(t)L̂fF
{
˙̃y(t)

}
=− σ1ỹT(t)L̂f ỹ(t)− ỹT(t)Lf κ̇(t)

− ỹT(t)L̂fF
{
σ2sgn (ỹ(t)) + σ3sgn

(
L̂f ỹ(t)

)}
.

For ∀h ∈ −ỹT(t)L̂fF
{
σ3sgn

(
L̂f ỹ(t)

)}
, it has h ≤

−σ3

∥∥∥L̂f ỹ(t)
∥∥∥
1
. Furthermore, it is analyzed that

σ3ỹT(t)L̂f sgn
(
L̂f ỹ(t)

)
=−

∑
i∈Vf

1∣∣∣N l
i

∣∣∣
∑
j∈N l

i

ỹTi (t)
[
sgn (ỹi(t))− sgn

(
ỹj(t)

)]
≤ 0.

Therefore, for ∀s ∈ −ỹT(t)ΞF {sgn (ỹ(t))}, it has s ≤ 0,
where Ξ = Idnf

− 1
nf

1dnf
1T
dnf

. It satisfies L̂f ≥ λ2 (Lf )Ξ,
and Ξ2 = Ξ.

In view of Section II-D, V̇Ly(t) ∈ LEq.(32)VLy(t) for almost
all t ≥ 0. Then, by combining with the fact Ξκ̇ = 0dnf

, it
follows

maxLEq.(32)VLy(t) ≤− σ3

∥∥∥L̂f ỹ(t)
∥∥∥
1
≤ −4σ3λ2 (Lf )V

1
2
y (t).

In view of Lemma 2, it follows L̂f ỹ(t) → 0dnf
, t → TLy .

It implies ỹi(t)− ỹj(t) → 0d, ∀i, j ∈ Vf , t → TLy . ■
Theorem 5: Under Assumptions 1, 2, and 7, the estimation

error ỹi(t) with the dynamics described by (32) will converge
to zero in finite time Ty , i.e.,

lim
t→Ty

ỹi(t) = 0d, ∀i ∈ Vf ,

where

Ty =TLy +
1

σ1
ln

σ1V̂
1
2
y − 2 (σ2 − δ3)

2 (σ2 − δ3)
,

V̂y = sup
τ∈[0,TLy]

Vy (τ) ,

Vy(t) =
1

2
ỹT(t)ỹ(t).

Proof: In view of Theorem 4, when t > Ty , it has

L̄f ỹ(t) = 0dnf
.

We consider the Lyapunov function candidate Vy(t) =
1
2 ỹT(t)ỹ(t). When t > Ty , the set-valued Lie derivative of
Vy(t) with respect to (32) is given by

LEq.(32)Vy(t) =ỹT(t)F
{
˙̃y(t)

}
=ỹT(t)F {−σ1ỹ(t)− σ2sgn (ỹ(t)) + κ̇(t)} .

According to Assumption 7, it is also known
that ∥ẏ∗(t)∥2 ≤ δ3. Therefore, for ∀h ∈
−ỹT(t)F {σ2sgn (ỹ(t)) + κ̇(t)} , it has h ≤

− (σ2 − δ3) ∥ỹ(t)∥1. In view of Section II-D, V̇y(t) ∈
LEq.(32)Vy(t) for almost all t ≥ 0. It has

maxLEq.(32)Vy(t) ≤− σ1ỹT(t)ỹ(t)− (σ2 − δ3) ∥ỹ(t)∥1
≤− 2σ1Vy(t)− 4 (σ2 − δ3)V

1
2
y (t).

In view of Lemma 1, it follows ỹi(t) → 0d, t → Ty . ■
Theorem 5 shows that the system Σ1 is UGAS under the

condition (p̃l, x̃) =
(
0dnl

, 0dfnf

)
. Here we have the following

proposition to conclude the stability of system Σ1 combining
with the shape estimator described in the previous section.

Proposition 2: Under Assumptions 1-7, the estimator (27)
can let local translation estimation yi(t) converge to y∗(t), i.e.,

lim
t→∞

ỹi(t) = 0d, ∀i ∈ Vf .

Proof: In view of Proposition 1, it has lim
t→∞

x̃(t) = 0dfnf
.

Combing with lim
t→∞

p̃l(t) = 0dnl
, we know that the system

Σ2 is t0-uniformly bounded and UGAS with the equilibrium
(p̃l, x̃) =

(
0dnl

, 0dfnf

)
.

From Theorem 5, we know the equilibrium ỹ(t) = 0dnf

is UGAS for the system (31). Further, the system Σ1 is also
t0-uniformly bounded, because y∗i (t), p̃l(t), and x̃i(t) are all
bounded.

Therefore, according to Lemma 3, the system Σ1 with the
equilibrium (ỹ, p̃l, x̃) =

(
0dnf

, 0dnl
, 0dfnf

)
is UGAS, which

implies lim
t→∞

ỹi(t) = 0d, ∀i ∈ Vf . ■

VI. TIME-VARYING LINEAR FORMATION TRACKING
CONTROLLER DESIGN

This section describes a cooperative linear formation track-
ing control method for followers to track their desired posi-
tions p∗

f (t) using the estimated shape and translation parame-
ters xi(t) and yi(t).

For followers with dynamics (5), the linear formation track-
ing control law is designed as follows:

ui(t) =
(

ṙTi (t)⊗ Id
)

xi(t) +
(
rTi (t)⊗ Id

)
ẋi(t) + ẏi(t)

− ρ
[
pi(t)−

(
rTi (t)⊗ Id

)
xi(t)− yi(t)

]
,

(33)

where ρ > 0.
The follower’s position error is defined as p̃i(t) ≜ pi(t) −

p∗
i (t), ∀i ∈ Vf .
The derivative of p∗

i (t) is obtained by

ṗ∗i (t) = ẏ∗(t) +
(

ṙTi (t)⊗ Id
)

x∗(t) +
(
rTi (t)⊗ Id

)
ẋ∗(t).

Then, the position error dynamics are obtained by

˙̃pi(t) =
(

ṙTi (t)⊗ Id
)

x̃i(t) +
(
rTi (t)⊗ Id

)
˙̃xi(t) + ˙̃yi(t)

− ρp̃i(t) + ρ
(
rTi (t)⊗ Id

)
x̃i(t) + ρỹi(t).

(34)

Now, we define the following cascaded time-varying sys-
tems:

Σ3 : ˙̃pf = ϱ3

(
t, p̃f , x̃, ˙̃x, ỹ, ˙̃y

)
, (35)

Σ4 :


¨̃x =ϱ41

(
t, x̃, ˙̃x

)
¨̃y =ϱ42

(
t, ỹ, ˙̃y

) , (36)
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where Σ3 represents the dynamics of followers’ position error.
Σ4 comprises the error dynamics of shape and translation
estimations.

Theorem 6: Under Assumptions 1-7, the formation tracking
controller (33) can let followers with the dynamics (5) to track
the target formation p∗i (t), i.e.,

lim
t→∞

p̃i(t) = 0d, ∀i ∈ Vf .

Proof: We first study the stability of the system Σ3 under
the condition

(
x̃, ˙̃x, ỹ, ˙̃y

)
=

(
0dfnf

, 0dfnf
, 0dnf

, 0dnf

)
. Then,

Σ3 becomes

˙̃pf = ϱ3
(
t, p̃f , 0dfnf

, 0dfnf
, 0dnf

, 0dnf

)
. (37)

We consider the following Lyapunov function candidate for
(37):

Vp(t) =
1

2
p̃Tf (t)p̃f (t),

whose derivative is given by V̇p = p̃T
f
˙̃pf = −ρp̃Tf p̃f .

Therefore, the system (37) is UGAS with the equilibrium
p̃f (t) = 0dnf

.
In view of Propositions 1 and 2, we know lim

t→∞
x̃(t) =

0dfnf
, and lim

t→∞
ỹ(t) = 0dnf

. Further, it apparently has

lim
t→∞

˙̃x(t) = 0dfnf
, and lim

t→∞
˙̃y(t) = 0dnf

. Thus, the system
Σ4 is t0-uniformly bounded and UGAS with the equilibrium(

x̃, ˙̃x, ỹ, ˙̃y
)
=

(
0dfnf

, 0dfnf
, 0dnf

, 0dnf

)
.

Combing with the fact that the system (37) is UGAS with
the equilibrium p̃f (t) = 0dnf

, we know the system Σ3 is also
t0-uniformly bounded, because x̃i(t), ˙̃xi(t), ỹi(t), and ˙̃yi(t)
are all bounded.

Therefore, according to Lemma 3, the system Σ3 with the
equilibrium

(
p̃f , x̃, ˙̃x, ỹ, ˙̃y

)
=

(
0dnf

, 0dfnf
, 0dfnf

, 0dnf
, 0dnf

)
is UGAS, which implies lim

t→∞
p̃i(t) = 0d, ∀i ∈ Vf . ■

VII. SIMULATION

This section presents simulation results to verify the
estimation-based time-varying linear formation tracking con-
trol schemes. The desired time-varying formation is generated
by the optimization-based method described in Appendix A.

A. Simulation Setup

We consider a formation maneuver task in R2. There is
a group of 16 agents, including 5 leaders and 11 followers.
The communication topology among agents is given in Fig. 3.
The subgraph within followers is undirected and connected.
Thereby, Assumption 1 is satisfied.

The time-varying nominal configuration {ri(t)}16i=1 is a scal-
ing hypercube lying in R4. It satisfies the following dynamics

ṙi(t) = 0.04 cos (0.1t) 14,

131211

14

10

16 15

1f

l

2f

6789

2 3 41 5

Fig. 3. Communication topology among agents. It is seen Vl = {1, 2,
3, 4, 5}, Vf1 = {6, 7, 8, 9}, and Vf2 = {10, 11, 12, 13, 14, 15, 16}.

-4

-2

0

2
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8

-5

-10 5
0

-5

47

11

1

14

2

58
912

15

3

16

6

1013

Fig. 4. A 4-dimensional hypercube is projected onto a 3-dimensional
space. x, y, z, and w are 4 coordinate axes of R4. The transformed
coordinate axes are also presented. Note that straight lines connecting
two agents in this figure do not represent a connected topology, but only
represent edges parallel to the 4 coordinate axes.

with the initial value given by

r1(0) =
[

2 2 2 2
]T r2(0) =

[
−2 2 2 2

]T
r3(0) =

[
2 −2 2 2

]T r4(0) =
[

2 2 −2 2
]T

r5(0) =
[

2 2 2 −2
]T r6(0) =

[
−2 −2 2 2

]T
r7(0) =

[
−2 2 −2 2

]T r8(0) =
[
−2 2 2 −2

]T
r9(0) =

[
2 −2 −2 2

]T r10(0) =
[

2 −2 2 −2
]T

r11(0) =
[

2 2 −2 −2
]T r12(0) =

[
−2 −2 −2 2

]T
r13(0) =

[
−2 −2 2 −2

]T r14(0) =
[
−2 2 −2 −2

]T
r15(0) =

[
2 −2 −2 −2

]T r16(0) =
[
−2 −2 −2 2

]T
It is verified that this time-varying nominal configuration

with the interactive topology (shown in Fig. 3) always satisfies
Assumptions 2 and 3. Fig. 4 shows the projection of the
hypercube {ri (0)}16i=1, where the coordinates transformation
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Fig. 5. Shape estimation errors.

matrix is given by 1 0 0 1
0 1 0 0.5
0 0 1 1

 .

Two obstacles are modeled as planar circles with the same
radius 6 m. Therefore, the safe distance is lk = 6m. Their
location are q1 =

[
20 8

]T
m and q2 =

[
18 −8

]T
m,

respectively. We select the safe distance among agents to be
l = 0.5m. The gain matrix is set as Q = diag (4I8, 2I2).
The reference time-varying linear formation transformation
parameters vec

(
Āref

(t)
)

are selected satisfying the following
dynamics

vec
(
˙̄Aref(t)

)
=

[(
ẋref(t)

)T (
ẏref(t)

)T
]T

,

ẋref(t) =− 0.04 cos (0.1t)

0.16 sin2 (0.1t)
18,

ẏref(t) =

{[
0.4 0

]T
10s ≤ t ≤ 110s

02 other
,

with the initial value

Āref
(0) =

[
1.2789 −1.6446 −0.9973 0.3099 0
1.1379 1.7484 −0.4261 1.1098 0

]
.

By setting ι = 1, one obtains the trajectories of leaders from
(40). Moreover, the upper bounds of ẋ∗(t), ẏ∗(t), and ṗs(t),
s ∈ V l is also obtained.

Then, the parameters for the shape estimator (13), transla-
tion estimator (27), and formation tracking controller (33) and
(41) are select as follows satisfying Assumptions 5-7.

α = 3, γi = 3, k = 2,

σ1 = 1, σ2 = 2, σ3 = 2, ρ = 2.

B. Simulation Results

Fig. 5 and Fig. 6 illustrate that linear formation shape and
translation estimation errors all converge to zero. It validates
the effectiveness of the proposed shape and translation estima-
tors (13) and (27). The formation tracking errors are presented
in Fig. 7. One observes that the convergence of formation
tracking errors is slower than estimation errors shown in

Fig. 6. Translation estimation errors.

Fig. 7. Formation tracking errors.

Fig. 5 and 6, as we can see that estimation errors converge
within 2s but formation tracking errors take longer. This phe-
nomenon also confirms the cascaded relationship between the
proposed estimators and controllers. Additionally, within 10s,
the formation tracking errors converge to a very small value.
It guarantees the safety of subsequent obstacle avoidance
maneuvers, as we can see the translational maneuver begins
at 10s (also see the given reference translation parameter
ẏref = 02, t < 10s).

Fig. 8 shows the entire process of the formation maneu-
ver task in the environment with obstacles. The maneuver
task involves passing through a narrow passage between two
obstacles. Before 10s, agents identify formation shape and
translation parameters, waiting for the formation tracking
errors to converge to sufficiently small values. Then, they
maneuver in the x+ direction and shrink the formation (10s
- 45s). Next, the team’s formation compresses in y axis to
cross the narrow passage between two obstacles (45s - 75s).
After exiting the obstacle area, the compressed formation
begins to recover (75s - 105s). Finally, the group of agents
reaches the destination

[
0 40

]
m, and forms the reference

target formation in 150s. Throughout the whole maneuvering
process, a flexible formation maneuver is realized based on
the proposed time-varying linear formation control schemes.

VIII. CONCLUSION

We have proposed a time-varying linear formation control
architecture for multi-agent systems. This architecture offers a
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Fig. 8. Formation variations in the simulation. Note that straight lines connecting two agents in this figure do not represent a connected topology,
but only represent edges that are parallel to the 4 coordinate axes in the nominal formation, given in Fig. 4.
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broad set of flexible formations by specifying a time-varying
nominal configuration that can lie in a higher-dimensional
space than the agents’ workspace.

An estimation-based formation control scheme has been
proposed for time-varying formation tracking. One impressive
thing is that the proposed control schemes allow the challenge
case that the nominal configuration is time-varying. Estimators
have been proposed to obtain precise time-varying shape
and translation parameters, from the observation of leaders’
motion. Furthermore, the proposed estimator essentially also
accomplishes the problem of distributed solving a system of
time-varying linear equations. Based on these estimation re-
sults, the time-varying linear formation tracking controller has
been given to enhance formation maneuverability in complex
environments.

In future research, there are several interesting topics, in-
cluding nonlinear formation transformation, distributed linear
formation parameter decision, and uncertainties in linear for-
mation identification.

APPENDIX

A. Time-varying Linear Formation Design
This subsection describes a time-varying target formation

design method. In light of Theorem 1, under Assumption 3,
we know that the target formation is uniquely determined by
leaders. The linear formation parameters can be expressed
through the desired positions of leaders as follows:

vec(Ā(t)) = (R̄+
l (t)⊗ Id)p∗l (t).

Therefore, notice that linear formation design is essentially
the desired trajectory planning of leaders. The desired position
of followers is represented by that of leaders, i.e.,

p∗i (t) = (r̄i(t)⊗ Id) vec(Ā(t))

= (r̄i(t)⊗ Id) (R̄
+
l (t)⊗ Id)p∗l (t)

= Gi(ri(t))p∗l (t)

=
∑
j∈Vl

Gij(t)p∗j (t),

where

Gi(ri(t)) =
[

Gi1(t) . . . Ginl
(t)

]
= (r̄i(t)⊗ Id) (R̄

+
l (t)⊗ Id).

There are no environmental obstacles. The formation opti-
mization is formulated as follows:

min J1(t)

s.t. hik (t, p∗i , qk) ≤ 0 i ∈ V , k = 1, ..., no

wij

(
t, p∗i , p∗

j

)
≤ 0 i, j ∈ V , i ̸= j

, (38)

where J1(t) represents the formation keeping performance.
hik (t, p∗

i , qk) represents the safe constraints for obstacle
avoidance of agent i. wij

(
t, p∗

i , p∗
j

)
represents reciprocal

avoidance constraints between agents i and j. The expressions
of J1(t), hik (t, p∗i , qk), and wik

(
t, p∗

i , p∗j
)

is designed as

J1(t) =vec
(

Ã(t)
)T

Qvec
(

Ã(t)
)
,

vec
(

Ã(t)
)
=vec

(
Ā(t)

)
− vec

(
Āref

(t)
)

Fig. 9. The convex polygon constructed from obstacles.

hik (t, p∗i , qk) =lk

[
(p∗

i (t)− qk(t))
T
(p∗

i (t)− qk(t))
] 1

2

− (p∗
i (t)− qk(t))

T
(p∗

i (t)− qk(t)) ,

wij

(
t, p∗i , p∗j

)
=l

[(
p∗
i (t)− p∗j (t)

)T (
p∗
i (t)− p∗j (t)

)] 1
2

−
(
p∗
i (t)− p∗

j (t)
)T (

p∗
i (t)− p∗j (t)

)
,

where Q is a diagonally positive definite coefficient matrix;
vec

(
Āref

(t)
)

is a predefined time-varying reference linear
formation transformation matrix; qk(t) represents the position
of obstacle k. lk and l denote safe distances; hik (t, p∗

i , qk) and
wij (t, p∗i , qk) are constructed from the point-normal form of
lines. For example, Fig. 9 illustrates an example of the resulted
convex polygon from constraints {hik (t, p∗

i , qk)}
no

k=1.
By using interior point method [51], the constrained opti-

mization (38) is reformulated into the following unconstrained
optimization:

min J1(t) + J2(t) + J3(t), (39)

where

J2(t) = − 1

t+ 1

[
n∑

i=1

m∑
k=1

ln (−hik (t, p∗
i , q∗k))

]
,

J3(t) = − 1

t+ 1

 n∑
i=1

n∑
j=i+1

ln
(
−wij

(
t, p∗

i , p∗j
)) .

J2 is derived from constraints hik (t, p∗i , qk) ≤ 0; J3 is
derived from constraints wij (t, p∗i , qk) ≤ 0. Since hik ≤ 0 is
non-convex, (39) is also a non-convex optimization. However,
feasible desired trajectories for leaders can be obtained by
enforcing p∗

l (t) to move along the gradient descent direction
of J(t) ≜ J1(t) + J2(t) + J3(t), as expressed by

ṗ∗s(t) = −
(
ι∇p∗sJ(t) +

∂

∂t
∇p∗sJ(t)

)
, ∀s ∈ V l, (40)

where ι > 0.
In addition, leaders can employ the following tracking

controller to track the obtained desired trajectory:

ui(t) = ṗ∗i (t)− ρ (pi(t)− p∗i (t)) , ∀i ∈ V l. (41)
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B. Proof of Lemma 5

Form the definition of Πi(t) (below (15)), one knows Idf −
Πi(t) is a positive (semi-)definite matrix when i ∈ Vf1, and
null matrix when i ∈ Vf2. From the fact that Vf1 ̸= ∅, it is
conducted that Idfnf

−Π(t) is positive semi-definite. In view
of Assumption 1, it is obtained that L̄f is also positive semi-
definite. Thus, in order to prove Lemma 3, it is sufficient to
establish that

(
Idfnf

−Π(t)
)
+L̄f is non-singular, which will

be proven by assuming the contrary to obtain a contradiction.
Suppose there is a nonzero vector ψ(t) ∈ Rdfnf satisfying[(
Idfnf

−Π(t)
)
+ L̄f

]
ψ(t) = 0dfnf

. Then, it clearly has(
Idfnf

−Π(t)
)
ψ(t) = 0dfnf

,

L̄fψ(t) = 0dfnf
.

In view of L̄fψ(t) = 0dfnf
, ψ can be denoted by ψ(t) =

1nf
⊗ θ(t), θ(t) ∈ Rdf . Then, from

(
Idfnf

−Π(t)
)
ψ(t) =

0dfnf
, we obtain Mi(t)θ(t) = 0df , ∀i ∈ Vf1. For all followers

belonging to Vf1, they establish the following system of linear
equations:

Mf (t)θ̂(t) = 0m, (42)

where

Mf (t) =
[
· · · Mi

T(t) · · ·
]T

, i ∈ Vf1,

θ̂(t) =1|Vf1| ⊗ θ(t).

According to Assumption 4, the measurable leaders’ edge
displacements linearly span Rf in the nominal configuration.
Therefore, rank (Mf (t)) ≡ rank

([
Mf (t) 0

])
≡ df . In view

of Section II-C, (42) has the unique solution θ̂(t) = 0|Vf1|df ,
which implies θ(t) = 0df . Thus, we obtain ψ(t) = 0nfdf .
This contradicts the hypothesis.

Hence,
(
Idfnf

−Π(t)
)
+ L̄f is non-singular, and thus

positive definite.
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