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a b s t r a c t

This paper proposes a new distributed leader–follower control architecture, termed linear formation
control, to realize formation variations. The objective is to navigate a group of agents to reach a specific
target formation, which is a linear transformation of the pre-defined nominal configuration, whose
dimension can be higher than agents’ coordinates. The proposed architecture enables the formation to
adjust through arbitrary linear transformations to accommodate the environment, offering a diverse
range of feasible formations. First, we introduce the concept of ‘‘linear localizability" that leaders can
uniquely determine the target formation. Then, using the pre-defined stress matrix, we propose a
linear formation control method, which can be regarded as an extension of recent affine formation
control approaches. Next, in the situation where the stress matrix is unavailable, distributed estimators
are designed to obtain accurate linear formation parameters. We propose an estimation-driven linear
formation control method using the graph Laplacian matrix. Finally, simulations are conducted to verify
the effectiveness of the proposed linear formation control schemes.

© 2024 Elsevier Ltd. All rights are reserved, including those for text and datamining, AI training, and
similar technologies.
1. Introduction

Formation control represents a fundamental cooperative be-
avior of multi-agent systems, demonstrating its successful ap-
lications in various scenarios, such as aerial surveillance (Beard,
cLain, Nelson, Kingston, & Johanson, 2006), cooperative trans-
ortation (Zhang, Zhang, & Huang, 2024; Zhang et al., 2021), agri-
ultural operations (Guillet, Lenain, Thuilot, & Rousseau, 2017),
nd space missions (Gill, Sundaramoorthy, Bouwmeester, Zand-
ergen, & Reinhard, 2013). However, due to the changes of the
mbient environment in diverse cooperative tasks, it is typically
ecessary for formations to vary accordingly.
In the last decade, there have been growing interests in the

tudy of formation scaling and rotation. It is shown a pair of
gents is sufficient to determine the formation scaling size (see,
.g., Coogan and Arcak (2012), Han, Wang, Lin, and Zheng (2016),
iu, Ma, Zhang, and Huang (2023), Yang, Cao, Sun, Fang, and Chen
2018), Zhao and Zelazo (2017)) and rotation (see, e.g., Buckley
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& Egerstedt, 2021; Chen, Yang, Shi, Li, & Feroskhan, 2022). The
desired scaling size can be estimated by using relative displace-
ment measurements (Coogan & Arcak, 2012; Han et al., 2016;
Liu et al., 2023; Yang et al., 2018). With the fact of bearing
invariant in formation scaling, a bearing-based control method
is proposed in Zhao and Zelazo (2017) for formation scaling
maneuver. The scaling control strategy has also been applied to
practical robotic systems in Lu, Wen, Shen, and Zhang (2021),
Zhang, Wang, Wang, and Tian (2023), where adaptive neural
network techniques are utilized to deal with the uncertainties of
robot dynamics. By constructing triangulations in planar forma-
tion problems, bearing-only formation control schemes are pro-
posed to achieve the desired rotation and scaling size in Buckley
and Egerstedt (2021), Chen et al. (2022). Besides, when relative
angles can only be obtained in agents’ local coordinate frames,
angle rigidity is introduced as an extension of bearing rigidity
in Chen, Cao, and Li (2021), where the corresponding angle-only
formation control scheme is also given, but as addressed in Chen
and Sun (2023), only almost global stability can be is guaran-
teed in usually. Additionally, a coordinate-free formation control
method that enables scaling and rotation is proposed in Mehdi-
far, Bechlioulis, Hendrickx, and Dimarogonas (2023), where the
desired formation is constrained by variables of bearing and
ratio of the distances in bipolar coordinates. Formation rotation
and scaling have also been achieved in Garcia de Marina, Cao,
and Jayawardhana (2015), Garcia De Marina, Jayawardhana, and
data mining, AI training, and similar technologies.
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ao (2016) through the utilization of inconsistent distance mea-
urements. For high-order nonholonomic systems, a distributed
lanar formation control method is presented to stabilize the
ormation with the desired scale size and any rotation up to ±90◦

n Fathian, Safaoui, Summers, and Gans (2021), where matrix-
eighted edges are used to represent interactive relationships
mong agents. Furthermore, scaling and rotation behaviors can
lso be attained by manipulating the complex-Laplacian ma-
rix associated with the underlying graph (see, e.g., Garcia de
arina, 2021; Motoyama & Cai, 2019), but it is worth noting

hat the modified matrix has to be computed centrally. To ad-
ress the challenge of designing formation sizes in dynamic envi-
onments, online cooperative decision-making methods are pro-
osed in Zhang, Lv, Lu, and Yang (2022), Zhang, Yang, Lyu, Zhao,
nd Fang (2024) to manage formation scaling parameters. Within
his method, distributed average tracking filters are designed to
uarantee consensus among local scaling parameters. It is noticed
hat scaling and rotation are two specific types of affine trans-
ormation motions. A general affine transformation encompasses
broader range of formation variations, including translation,

caling, rotation, shear, reflection, and their combinations.
Recently, the affine formation control approach has gained

ntense attention. In Lin, Wang, Chen, Fu, and Han (2016), the
ecessary and sufficient conditions of affine formation realiza-
ion and stabilization have been provided for both directed and
ndirected graphs. The problem of time-varying affine formation
aneuver control is explored in Zhao (2018). However, in the
esigned formation tracking controllers, inputs from neighboring
gents are required. This controller is further extended to triple
ntegrators (Onuoha, Tnunay, Li, & Ding, 2019). As an extreme
ase where only one agent is aware of the formation scaling size,
n estimation-based control method is presented in Yang, Sun,
ao, Fang, and Chen (2019), relying only on relative positions
o achieve the desired formation pattern. This method is further
eveloped in Yang, Fang, Cao, and Chen (2022), where the de-
ired rotation parameter can also be estimated. In addition to
hese studies, extensive research has been conducted on affine
ormation control. In Yang, Xiao, and Chen (2021), the affine
ormation problem within the special Euclidean space is studied,
nd the controller is directly tailored to the corresponding Lie
lgebra. To further improve convergence performance, various
pproaches such as finite-time, fixed-time, and prescribed-time
ffine formation control methods are studied in Lin, Lin, Sun,
nd Anderson (2022), Gao, Liu, Zhou, Zhao, and Huang (2022),
nd Wang, Ding, Wang, Liang, and Hu (2021), respectively. For
roader applicability, affine formation control for general linear,
igh-order, time-delay, and heterogeneous systems are also ex-
lored in Onuoha, Tnunay, Wang, and Ding (2020), Xu, Zhao,
uo, and You (2020), Wang, Ding, Wang, Zuo, and Ding (2023),
nd Xu, Luo, Li, You, and Duan (2019), respectively. In addition, to
ptimize communication resource usage within physical robotic
ystems, event-triggered mechanisms are discussed for affine
ormation control schemes in Zhou, Huang, Mao, Zhu, and Su
2022), Zhu, Huang, Lu, Li, and Su (2023).

Although the transformation of formations from scaling and
otation to the affine manner has been studied, it is evident that
hese variations essentially can be represented by linear transfor-
ations. In pursuit of more diverse formation possibilities, this
aper proposes a comprehensive architecture for general linear
ormation control of multi-agent systems. The principal objective
f the linear formation control architecture is to realize the ma-
euvering of a group of agents toward a specified target forma-
ion, which is a linear transformation of the pre-defined nominal
onfiguration. It is important to note that the dimension of this
ominal configuration can be higher than agents’ workspace. We
roposed two sets of topological necessary and sufficient condi-
ions for achieving ‘‘linear localizability’’—a concept means that
2

eaders can uniquely determine the target formation. These two
ets of conditions provide the internal relations between the pre-
efined stress matrix and desired target formations, and connect
eaders’ target formation with linear formation transformation
arameters. Leveraging the above-mentioned properties, a stress
atrix-based linear formation control method is proposed for

ealizing the target formation. Subsequently, a distributed esti-
ator is devised to obtain the precise transformation parameters
roceeding to achieving the desired formation shape.
The main contributions of this paper are given as follows:

(1) We propose a new distributed leader–follower formation
control architecture, which we refer to as linear formation
control. The proposed architecture empowers a group of
agents to formation maneuver via arbitrary linear trans-
formations with a rectangular matrix. This allows more
feasible formations for adapting to different environments.

(2) We propose and prove the sufficient and necessary condi-
tions that leaders can uniquely determine the target for-
mation, termed ‘‘linear localizability’’.

(3) With a pre-defined stress matrix, we propose a linear for-
mation control scheme for formation tracking which can be
regarded as an extension of recent affine formation control
approaches (Lin et al., 2016; Yang et al., 2019; Zhao, 2018).
When the nominal formation is exactly lying in the same
dimensional space as the agents’ workspace, our proposed
control scheme degenerates to the affine formation control
method. In particular, we expand the formation transfor-
mation matrix from a square matrix specialized in the
affine formation control method to a general rectangular
matrix.

(4) When the stress matrix is unavailable, a distributed esti-
mator is proposed to obtain the precise linear formation
parameters for achieving target formation tracking.

The rest of this paper is organized as follows. First, some
reliminaries are given in Section 2. Then, the linear formation
roblem is addressed in Section 3. In Section 4, the necessary
nd sufficient conditions for linear localizability are presented.
e further proposed two distributed linear formation control
ethods using the stress matrix and distributed estimation, re-
pectively. Next, simulations are given to verify the effectiveness
f the proposed linear formation control schemes in Section 5.
inally, Section 6 concludes this article.

. Preliminaries

This section presents some notations and preliminary results
hat will be used in this paper.

.1. Notations

Let ⊗ denote the Kronecker product. For a matrix F ∈ Rm×n,
+

∈ Rn×m, and rank (F) denote its Moore–Penrose inverse,1
nd rank, respectively. vec(·) is the vector obtained by stacking
ll columns of a matrix. The vectorization of F is represented
y vec (F) =

[
f T1 , . . . , f Tn

]T, where fi denotes the ith column of
. We use null(·) and col(·) to represent the null and column
pace of a matrix, respectively. dim(·) is the dimension of a linear
pace. Denote the identity matrix with dimension n by In. We
se diag (D1, . . . ,Dn) to represent the block-diagonal matrix with
ach diagonal block being Di. For a set V , |V| denotes the number
f elements in V .

1 For a matrix F ∈ Rm×n , if rank(F) = m, it has FF+
= Im . If rank(FT) = n, it

has F+F = I (Horn & Johnson, 2012).
n
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.2. Graph Theory (Godsil & Royle, 2001; Opsahl & Panzarasa, 2009)
nd Graph Rigidity Theory (Alfakih, 2011)

An undirected graph G is a pair (V, E), where V = {v1, . . . , vn}

s a non-empty finite set of nodes and E ⊆ V × V is a set of
ordered pairs of nodes, called edges. An edge

(
vj, vi

)
represents

the connected path from node vj to node vi.
The Laplacian matrix L ∈ Rn×n of G is defined as

[L]ij =

{
−[A]ij i ̸= j∑
k∈N i

[A]ik i = j ,

where N i =
{
j ∈ V :

(
vj, vi

)
∈ E

}
is a set containing all neigh-

bors of node vi; A ∈ Rn×n is the adjacency matrix of G, where
[A]ii = 0, [A]ij = 1 for

(
vj, vi

)
∈ E and [A]ij = 0 otherwise. For

an undirected connected graph, the Laplacian matrix is positive
semi-definite and has only one zero eigenvalue.

The incidence matrix H = [hik] ∈ R|V|×|E| is defined as

hik =

{ 1 if vi is the head node of kth edge
−1 if vi is the tail node of kth edge
0 otherwise

.

The incidence matrix and Laplacian matrix satisfy L = HHT.
If the nodes’ coordinates in Rf are q =

[
qT
1 · · · qT

n

]T
∈ Rnf ,

q is referred as a configuration. Here we can define a framework
by the configuration q and the graph G.

Definition 1 (Framework (Lin et al., 2016)). A framework (G, q) in
Rf is the undirected graph G equipped with the configuration q.

An equilibrium stress of the framework (G, q) is a set of scalars{
ωij

}
i,j∈E , ωij ∈ R, such that∑

j∈N i

ωij
(
qi − qj

)
= 0f , ∀i ∈ V, (1)

where ωij
(
qi − qj

)
can be regarded as the force exerted by the

edge
(
vi, vj

)
on node vi. This force is called a tension when ωij >

0, and a compression when ωij < 0. Thus, Eq. (1) represents that
the forces applied on vi by

{
vj

}
j∈N i

are balanced. Eq. (1) can also
be rewritten into the following compact form:(
Ω ⊗ If

)
q = 0nf ,

where Ω ∈ Rn×n is called the stress matrix given by

[Ω]ij =

⎧⎨⎩ 0
(
vj, vi

)
/∈ E

−ωij
(
vj, vi

)
∈ E∑

k∈N i
ωik i = j

.

It is noted that the stress matrix has a similar structure to the
Laplacian matrix. However, one difference is that the weight for
an edge in the stress matrix can be positive, negative, or zero.
This leads to the fact that the stress matrix is not necessarily pos-
itive semi-definite, even if the corresponding graph is undirected
connected.

2.3. Linear transformation (Lay, Lay, & McDonald, 2014)

2.3.1. Linear transformation
The linear transformation W : Rn1 → Rn2 is a function (or

mapping) from the vector space Rn1 to Rn2 . A linear transforma-
tion can be expressed in the following form:

W(x) = Ax,

where x ∈ Rn1 ; W(x) ∈ Rn2 is the image of x; A ∈ Rn2×n1 is a rect-
angular linear transformation matrix. The linear transformation

satisfies the following two properties:

3

• Additivity: W(y) + W(z) = W(y + z),
• Homogeneity: cW(y) = W(cy),

where y, z ∈ Rn1 , c ∈ R.

2.3.2. Linear span
For a set of N vectors {xi}Ni=1 in Rn1 , the linear span S of those

vectors is the set of all finite linear combinations of elements
(vectors), such that

S =

{
N∑
i=1

aixi : ai ∈ R

}
.

The dimension of the obtained linear space S is defined as the
dimension of the linear span. If the dimension of the linear span
is n2, then we can say that the vectors {xi}Ni=1 linearly span Rn2 .

2.4. Affine transformation (Artin, 1988; Li, Wang, & Wang, 2010;
Tofallis, Gass, & Harris, 2013)

In Rm, affine transformation A : Rm
→ Rm is a shifted linear

transformation. For x ∈ Rm, A(x) ∈ Rm is the called the affine
image of x. An affine transformation can be expressed in the
following form:

A(x) = Ax + b,

where A ∈ Rm×m is a square linear transformation matrix; b ∈ Rm

is a translation vector.
The affine image can preserve some of the relationships of the

original image, including the collinearity between points, paral-
lelism, ratios of lengths of parallel line segments, and barycenters.

2.5. Solutions of a system of linear equations (Lay et al., 2014)

A system of linear equations about x ∈ Rc can be written in
the following form

Ax = b, (2)

where A ∈ Rr×c , b ∈ Rr . The solutions of the system of linear
equations (2) are identified based on the rank conditions of A and
b, given by

(1) Ax = b has only one solution, if rank
([
A b

])
= rank(A) =

c;
(2) Ax = b has infinite solutions, if rank

([
A b

])
= rank(A) <

c;
(3) Ax = b has no solution, if rank(A) < rank

([
A b

])
.

3. Problem statement

Consider a group of n agents in Rd, where d ∈ N+, n ≥ f + 1,
f ≥ d, and f ∈ N+. The agents consist of nl leaders and nf
followers. V , V l, and V f represent agent, leader and follower sets,
respectively. It has V l ∩ V f = ∅.

The group of n agents satisfies the following single-integrator
dynamics:

ṗi = ui, i = 1, . . . , n. (3)

where ui ∈ Rd is control input and pi ∈ Rd represents the
position.

Some definitions are given before presenting the problem.

Definition 2 (Nominal Configuration).
The nominal configuration {ri}ni=1, ri ∈ Rf is a set of pre-
defined vectors associated with each agent.
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Fig. 1. An example of linear and affine formation transformations. Both target formations I and II in (c) and (d) can be obtained via linear transformations from the
nominal configuration I in (a). However, there is no nominal configuration that can affinely transform into (c) and (d). It is because affine transformation is unable
to destroy collinear relationships (see Section 2.4). For example, the nodes 2, 3 and 4 are collinear in (d), but non-collinear in (c). Further, note that the projection
of the nominal configuration (a) on the xOy plane is exactly the nominal configuration (b). Therefore, all of the feasible formations, that are affinely transformed
rom the nominal configuration (b), can also be achieved by (a) with the last column of the linear transformation matrix zero. For example, the target formation (d)
an be obtained from the nominal configuration of both (a) and (b) by properly linear and affine transformation, respectively.
efinition 3 (Augmented Nominal Configuration).
r̄i =

[
rTi 1

]T
∈ Rf+1 is called the augmented nominal

onfiguration.

efinition 4 (Target Formation).
The target formation p∗

i ∈ Rd is the desired position for the
gents. It is a linear transformation of the augmented nominal
onfiguration, expressed as
∗

i = Ār̄i = Ari + b, (4)

here A ∈ Rd×f is a rectangular transformation matrix; b ∈
d is a translation vector; Ā =

[
A b

]
∈ Rd×(f+1). Ari and b

determine the geometric shape and translation movement of the
target formation, respectively. f and d are the space dimensions in
which the nominal configuration and target formation is defined,
respectively. It satisfies f ≥ d. All possible target formations
constitute the image space of the linear transformation of Ā,
defined as

T (r̄) =
{
p∗

∈ Rdn
: p∗

= (In ⊗ Ā)r̄
}
,

where

p∗
=

[(
p∗

1

)T
. . .

(
p∗
n

)T]T
,

r̄ =
[
r̄T1 . . . r̄Tn

]T
.

Although the transformation described in (4) can also be written
in the form of Ari + b, the linear part A still can be a rectangle
matrix. Consequently, the transformation (4) is a linear transfor-
mation T̂ (r̄ ) : Rf+1

→ Rd, where T̂ (r̄ ) =
{
p∗

∈ Rd, p∗
= Ār̄

}
.
i i i i i

4

The linear transformation T̂ (r̄i) can map the nominal configura-
tion of high-dimensional space to a specific target formation for
maneuvering. Fig. 1 also illustrates that the proposed linear for-
mation architecture can yield richer target formations compared
to affine approaches (Lin et al., 2016; Zhao, 2018).

The graph G denotes the interactive relationship among agents.
This paper designates the first nl agents as leaders without loss of
generality. The Laplacian matrix L and stress matrixΩ associated
with the graph G are defined in the following forms that are
consistent with the partition of leaders and followers:

L =

[
Lll Llf
Lfl Lff

]
, Ω =

[
Ω ll Ω lf
Ω fl Ω ff

]
.

All followers forms the subgraph Gf . The corresponding Laplacian
matrix of Gf is defined as Lf . N i and N fi denote the neighbor sets
of the agent i in G, and Gf , respectively.

In this paper, all agents are aware of the nominal configura-
tion, but only leaders know the desired target formation, which
is parameterized by the augmented linear transformation matrix
Ā. The primary objective is to develop control laws that enable all
followers to converge to the specific target formation, i.e.,

lim
t→∞

pi(t) = p∗

i = Ār̄i, i ∈ V f

We study the convergence under the following two scenarios.

Scenario 1: With a predefined stress matrix that connects the
target formations of leaders and followers, the convergence is
achieved by a stress matrix-driven control scheme.

Scenario 2: When the stress matrix is unavailable, the conver-
gence is achieved by cooperatively identifying the linear trans-
formation matrix A.
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. Main results

Before providing the main results, the following Lemma intro-
uces the algebraic transformations used in this paper.

emma 1. For a matrix X ∈ Rr×c and vectors {zi}i=1,...,m, zi ∈ Rc ,
the following equation always holds

(Im ⊗ X) z = (Z ⊗ Ir) vec (X) ,

here Z =
[
z1 . . . zm

]T , z =
[
zT1 . . . zTm

]T , r, c,m ∈ N+.

roof. See Appendix A. □

Prior to the designing of control schemes, it is imperative
o analyze the uniqueness of target formation. Now, we intro-
uce a condition known as ‘‘linear localizability’’ that leaders can
niquely determine the target formation. The formal definition of
inear localizability is given below.

efinition 5 (Linear Localizability).
For the framework (G, r), linear localizability means that for

ny p∗
=

[
(p∗

l )
T (p∗

f )
T ]T

∈ T (r̄), p∗

f can be uniquely determined
y p∗

l , where p∗

l ∈ Rdnl and p∗

f ∈ Rdnf are the target formations of
eaders and followers, respectively.

If the nominal formation lie in the same Euclidean space as
hat of agents’ coordinates (i.e., f = d), the concept of linear local-
zability is just the affine localizability introduced in Zhao (2018).
owever, higher dimensional nominal formations are allowed in
inear localizability. It means linear localizability is the more gen-
ral one. Here we introduce the following assumption and lemma,
hich is adapted from affine formation control approaches (Lin
t al., 2016; Zhao, 2018).

ssumption 1. The framework (G, r) has a pre-defined positive
emi-definite stress matrix Ω satisfying rank(Ω ) = n − f − 1.

emma 2. For the framework (G, r), the following conditions (1)–
3) are equivalent. Furthermore, if the framework (G, r) satisfies
ssumption 1, all of the following conditions are equivalent.

(1) {ri}ni=1 linearly span Rf .
(2) n ≥ f + 1 and rank(R̄) = f + 1, where

R̄ =
[
R̄l R̄f

]
=

[
r̄1 . . . r̄n

]T
.

(3) dim(T (r̄)) = d(f + 1).
(4) T (r̄) = null(Ω ⊗ Id).

Proof. See Appendix B. □

Remark 1. Lemma 2 highlights that the stress matrix exhibits
an internal relationship with target formations, thus rendering
it a valuable tool in linear formation control. We can obtain the
stress matrix satisfying Assumption 1 from centralized offline
methods, including singular value decomposition (SVD) (Section
7.A in Zhao, 2018, Algorithm 1 in Yang, Sun, Cao, Fang, & Chen,
2017), or topological optimization (Xiao, Yang, Zhao, & Fang,
2022). In addition, if the framework (G, r) is generic,2 the nec-
essary and sufficient condition that satisfies Assumption 1 is that

2 A framework (G, r) is generic if all the coordinates of all the points of r are
lgebraically independent over the rationals. Intuitively speaking, for a generic
onfiguration, there can be no symmetries in the configuration, no three nodes
tay on the same line, and no three lines go through the same node (Connelly
Gortler, 2015).
 2

5

the framework (G, r) is universally rigid3 (Theorem 2 in Alfakih,
2011).

We will elaborate two control schemes under the scenarios
described in Section 3.

4.1. Stress matrix-based linear formation control

This subsection studies the convergence of followers’ positions
under Scenario 1. Only when the framework (G, r) is linearly
localizable can leaders uniquely determine the desired positions
of followers. Consequently, linear localizability stands as a fun-
damental prerequisite for the proposed linear formation control
architecture. Following, we analyze the necessary and sufficient
conditions for linear localizability.

Assumption 2. rl linearly spans Rf , where rl =
[
rT1 . . . rTnl

]T
.

Theorem 1. The framework (G, r) is linearly localizable if and only
f Assumption 2 is satisfied. Furthermore,
∗

f = (R̄f ⊗ Id)(R̄+

l ⊗ Id)p∗

l . (5)

Proof. (Sufficiency) By invoking Lemma 1, it is considered that p∗

l
as been determined by a linear transformation Ā, such that
∗

l =
(
Inl ⊗ Ā

)
r̄l = (R̄l ⊗ Id)vec(Ā). (6)

where r̄l =
[
r̄T1 . . . r̄Tnl

]T
. If rl linearly span Rf , according to

Lemma 2, it can be derived that rank(R̄l) = f + 1 and nl ≥ f + 1.
Then, vec(Ā) can be uniquely obtained by

vec(Ā) = (R̄+

l ⊗ Id)p∗

l .

Then, by using the above equality, followers’ target position can
be uniquely computed by

p∗

f =
(
Inf ⊗ Ā

)
r̄f =(R̄f ⊗ Id)vec(Ā)

=(R̄f ⊗ Id)(R̄+

l ⊗ Id)p∗

l

where r̄f =
[
r̄Tnl+1 . . . r̄Tn

]T
. The linear localizability is proved.

(Necessity) In view of Section 2.5, if rl do not linearly span
Rf , rank(R̄l) < f + 1, which does not satisfy the rank conditions
for the system of linear equations (6) having the unique solution
about vec(Ā). Hence, vec(Ā) cannot be located, nor does p∗

f . ■

Form Theorem 1, we know that p∗

f can be uniquely determined
by p∗

l through (5). Then, the relationship between Ω and p∗ will
be addressed in the following theorem.

Theorem 2. Under Assumptions 1 and 2, followers’ target forma-
tion p∗

f can be uniquely represented by (7) if and only if Ω ff is
nonsingular.

p∗

f = −(Ω−1
ff Ω fl ⊗ Id)p∗

l . (7)

Proof. (Sufficiency) In view of Lemma 2, it is also known that
p∗

∈ T (r̄) = null(Ω ⊗ Id), which means

(Ω ff ⊗ Id)p∗

f + (Ω fl ⊗ Id)p∗

l = 0dnf . (8)

Then, p∗

f = −(Ω−1
ff Ω fl ⊗ Id)p∗

l can be obtained. The relation (7) is
true.

(Necessity) In view of Section 2.5, ifΩ ff is singular, rank(Ω ff ) <
nf , which does not satisfy the rank conditions for the system of
linear equations (8) having the unique solution about p∗

f . Hence,
p∗

f cannot be uniquely represented by (7). ■

3 A framework is universally rigid if any framework in any dimension with
he same graph and edge lengths in a Euclidean image of it (Oba & ichi Tanigawa,
021).
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t{ 2
Although Theorems 1 and 2 have similar expressions as that
in Lin et al. (2016) and Zhao (2018), this paper leverages the con-
clusions of the solution structure of a system of linear equations
to make the proofs more concise.

According to Theorem 2, we also know thatΩ ff is positive def-
inite. Consequently, when working with a framework (G, r) that
satisfies Assumptions 1 and 2, the following classic stress matrix-
based control law (9) from (Zhao, 2018) can also be used for
achieving the convergence of followers’ positions in the proposed
linear formation control architecture.

ui = −kf
∑
j∈N i

ωij(pi − pj), i ∈ V f (9)

where kf is a positive gain.

Remark 2. In this subsection, we demonstrate that the proposed
stress matrix-based linear formation control scheme represents
a more general form of the affine formation control approach.
When the nominal formation exactly lies in Rd, i.e., f = d (A
becomes a square matrix), the proposed approach degenerates to
the affine formation control method described in Zhao (2018).

4.2. Estimation-based linear formation control

This subsection studies the position convergence of followers
when the stress matrix is unavailable (Scenario 2). Theorem 1
also shows that there exists an internal connection between lead-
ers’ formation and linear formation parameters. Consequently, we
propose a distributed estimation-driven linear formation control
method that can estimate the linear formation parameter Ā by
observing leaders’ edges. Foremost, the displacement measura-
bility is defined as follows:

Definition 6 (Displacement Measurability).
In the graph G, if there exists a triplet4 τji,ki, we say the

displacement corresponding to the edge (vj, vk) is measurable by
agent i.

According to Definition 6, note that it is unnecessary to ensure
the existence of edge (vj, vk) in G. The followers who can measure
leaders’ edges form the set V f 1, and the other followers consist
of V f 2. It satisfies V f = V f 1 ∪ V f 2, V f 1 ∩ V f 2 = ∅, and V f 1 ̸= ∅.

The following assumptions always hold in this subsection.

Assumption 3. The subgraph Gf is undirected and connected.
Then, its corresponding Laplacian matrix Lf is positive semi-
definite.

Assumption 4. In the nominal configuration {ri}ni=1, ri ∈ Rf , all
measurable displacements determined by triplets

{
τji,ki

}
linearly

span Rf , i.e.,

span
{
..., rjk, . . .

}
= Rf , for all Gs

(
τji,ki

)
⊂ G,

where i ∈ V f 1; j, k ∈ V l; rjk = rj − rk.

To estimate the desired linear transformation x∗
= vec(A) ∈

Rdf , we define that follower’ estimation xi satisfies the following
dynamics

ẋi = µi, i ∈ V f . (10)

4 The triplet τji,ki admits a subgraph Gs
(
τji,ki

)
consisting of three nodes and

wo edges, such that Gs
(
τji,ki

)
=

(
Vs

(
τji,ki

)
,Es

(
τji,ki

))
⊂ G, where Vs

(
τji,ki

)
=

v , v , v
}
, E

(
τ

)
=

{
(v , v ), (v , v )

}
.
i j k s ji,ki j i k i Y

6

We propose the following estimators for followers:

µi = − α1MT
i

(
Mixi − ξi

)
− α2

∑
j∈N fi

(
xi − xj

)
, i ∈ V f 1 (11)

µi = −α2

∑
j∈N fi

(
xi − xj

)
, i ∈ V f 2 (12)

with

ξi =
[
. . . pT

jk . . .
]T

, j, k ∈ V l ∩ N i,

Mi =
[
· · · QT

jk · · ·
]T

, j, k ∈ V l ∩ N i,

Qjk = rTjk ⊗ Id,
pjk = pj − pk,

rjk = rj − rk,

where N fi denote the neighbor sets of the agent i in the subgraph
Gf ; α1 and α2 are positive gains; ξi ∈ Rd|N fi| consists of all
measurable leaders’ edges determined by triplets

{
τji,ki

}
j,k∈V l

;

Qjk ∈ Rd×d2 represents the matrix form of nominal formation rjk;
Mi ∈ Rd|N fi|×d2 consists of all measurable leaders’ matrix form of
nominal formations determined by triplets

{
τji,ki

}
j,k∈V l

.
In (11)–(12), the term MT

i

(
Mixi − ξi

)
is designed to identify

x∗ using local measurements ξi. It requires local estimation xi to
satisfy Mixi = ξi. The term

∑
j∈N fi

(
xi − xj

)
is designed to let local

estimations {xi}i∈V f reach consensus.
The control law for followers is designed as follows:

ui = −β
∑
j∈N i

(
pij − Qijxi

)
, i ∈ V f (13)

where β denotes a positive gain; Qijxi represents locally recog-
nized target formation based on ith follower’s estimation xi.

Remark 3. The estimation-based method in Section 4.2 demon-
strates the utility under a sparser topological graph compared to
that in the stress matrix-based method described in Section 4.1,
specifically omitting the need for Assumption 1. For example,
according to Remark 1, a universally rigid generic framework
must have an available stress matrix (Alfakih, 2011), and must be
associated with a rigid graph.5 Henneberg d-construction (White-
ley, 2004) can construct a rigid graph with minimal edges in Rd.
It requires d new edges for each vertex addition. Therefore, the
resulting rigid graph will have more edges as the dimension of
the embedded Euclidean space increases, i.e., the dimension of
the nominal configuration increases. In contrast, the estimation-
based method only requires an undirected and connected topol-
ogy (as addressed in Assumption 3) regardless of the dimension
of the embedded Euclidean space. As shown in Fig. 2, subfigures
(a) and (b) are used for stress matrix-based and estimation-based
methods, respectively. We can see there are significantly less
edges in Fig. 2(b) than that in (a).

Remark 4. It is also noted that the stress matrix-based method in
Section 4.1 can be used with arbitrarily oriented local coordinate
frames, because it can be verified that ui = −kf

∑
j∈N i

ωijΞ i(pi −

pj) is (9) in the oriented coordinate frame with rotation matrix
Ξ i ∈ Rd×d. The estimation-based method in Section 4.2 can
only be implemented with aligned local coordinate frames. How-
ever, explicit communication is required in the estimation-based

5 A universally rigid framework must be globally rigid (Oba & ichi Tanigawa,
021). A globally rigid framework is associated with a rigid graph (Anderson,
u, & Hendrickx, 2008).
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Fig. 2. A comparison of topologies used in Sections 4.1 and 4.2. (a) is a framework satisfying Assumptions 1–2. It is computed by using the topology optimization
proposed in Yang et al. (2017). We can see that agents 2, 4, and 6 all lie in the plane z = 0. Therefore, this framework is nongeneric. (a) can be used for
he stress-based linear formation control described in Section 4.1. (b) is a simplified framework for the estimation-based linear formation control described in
ection 4.2. (c) represents the agent sets of (b). In (b) and (c), there exist three triplets τ35,45 , τ16,26 , and τ17,37 . Therefore, we can see V l = {1, 2, 3, 4}, V f 1 = {5, 6, 7},
f 2 = {8, 9, 10}. V f 1 , V f 2 , and black edges constitute the subgraph Gf . The pink edges denote the followers’ measurements of the leaders’ edges. We can see edges

3, 4), (1, 2), and (1, 3) are measurable by followers 5, 6, and 7, respectively. (For interpretation of the references to color in this figure legend, the reader is referred
o the web version of this article.)
ethod. This allows followers to align their local coordinate
rames by an extra consensus protocol (Lee & Ahn, 2016).

emma 3. Under Assumptions 3 and 4, the matrix Y+ L̄f is positive
efinite, where L̄f = Lf ⊗ Idf ,

Y =diag([Ynl+1,Ynl+2, . . . ,Yn]),

i =

{
Mi

TMi i ∈ V f 1
0df×df i ∈ V f 2

.

roof. From the definition of Yi, one knows Yi is a positive
efinite matrix when i ∈ V f 1, and null matrix when i ∈ V f 2.
rom the fact that V f 1 ̸= ∅, it can be conducted that Y is positive
emi-definite. In view of Assumption 3, it is obtained that L̄f is
lso positive semi-definite. Thus, in order to prove Lemma 3, it is
ufficient to establish that Y + L̄f is non-singular, which will be
roved by assuming the contrary to obtain a contradiction.
Suppose there is a nonzero vector ψ ∈ Rnf df satisfying

Y + L̄f
)
ψ = 0nf df . Then, it clearly has

Yψ = 0nf df ,

¯ fψ = 0nf df .

n view of L̄fψ = 0nf df , ψ can be denoted by ψ = 1nf ⊗θ, θ ∈ Rdf .
hen, from Yψ = 0nf df , we obtain Miθ = 0df , ∀i ∈ V f 1. For
ll followers belonging to V f 1, they form the following system
f linear equations:

f θ̂ = 0|V f 1|df , (14)

here

f =
[
· · · MT

i · · ·
]T

, i ∈ V f 1

θ̂ =

(
1|V f 1|

⊗ θ
)

ccording to Assumption 4, the measurable leaders’ edges lin-
arly span Rf in the nominal configuration. Therefore, Mf is
ull rank, i.e., rank

(
Mf

)
= rank

([
Mf 0

])
= df . In view of

Section 2.5, (14) has the unique solution about θ̂ that satisfies
θ = 0df . It implies ψ = 0nf df . This contradicts the hypothesis.

¯
Hence, Y + Lf is non-singular, and thus positive definite. □

7

Theorem 3. Consider leaders are equipped with appropriate tracking
controller satisfying lim

t→∞

[
pl(t) − p∗

l (t)
]

= 0dnl . Under Assump-
tions 2, 3 and 4, for any α > 0, the proposed estimator (11)–(12)
can enforce all followers’ local estimations with dynamics (10) to
converge to the desired linear formation parameter, i.e.,

lim
t→∞

xi(t) − x∗
= 0df , ∀i ∈ V f .

Proof. The position error is defined as

p̃i = pi − p∗

i = pi − Ār̄i. (15)

The estimation error is defined as

ei = xi − x∗. (16)

We define ξ∗i = Mix∗. Then, according to (10), (11), and (16), the
estimation error dynamics for follower i ∈ V f 1 are given as below

ėi =ẋi
= − α1MT

i

(
Mixi − ξ∗i + ξ∗i − ξi

)
− α2

∑
j∈N fi

(
xi − x∗

− xj + x∗
)

= − α1MT
i Mi

(
xi − x∗

)
+ α1MT

i

(
ξi − ξ∗i

)
− α2

∑
j∈N fi

(
xi − x∗

− xj + x∗
)

= − α1MT
i Miei + α1MT

i

(
ξi − ξ∗i

)
− α2

∑
j∈N fi

(
ei − ej

)
.

In view of (10), (12), and (16), the estimation error dynamics
for follower i ∈ V f 2 are obtained by

ėi = − α2

∑
j∈N fi

(
xi − x∗

− xj + x∗
)

= − α2

∑
j∈N fi

(
ei − ej

)
.

Thereby, the estimation error dynamics can be rewritten into the
following matrix form:

̇ ¯ ˜ ¯
e = −α1Ye − α1WHlmp − α2Lf e,
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here H̄lm =
(
HT

lm ⊗ Id
)
; Hlm is the incidence matrix consisting

f those measurable displacements of leaders; L̄f =
(
Lf ⊗ Idf

)
,

nd

W =diag(
[
Wnl+1,Wnl+2, . . . ,Wn

]
),

i =

{
MT

i i ∈ V f 1
0df×df i ∈ V f 2

.

e consider the following Lyapunov function:

e =
1
2
eTe,

whose derivative is

V̇e =eTė
= − α1eTYe − α1eTWH̄lmp̃ − α2eTL̄f e.

From Lemma 3, we also know that Y + L̄f is positive definite.
Then, it gives

V̇e ≤ − 2min {α1, α2} λmin
(
Y + L̄f

)
Ve

− α1eTWH̄lmp̃
,

n view of p̃l → 0, t → ∞, we know H̄lmp̃ → 0, which implies
TWH̄lmp̃ → 0, t → ∞. Therefore, it has e → 0, t → ∞. ■

heorem 4. Consider leaders are equipped with appropriate tracking
ontroller satisfying lim

t→∞

[
pl(t) − p∗

l (t)
]

= 0dnl . Under Assump-
ions 2, 3 and 4, with the estimator (10)–(12), for any β > 0,
the estimation-based formation control law (13) can enforce all
followers with dynamics (3) to converge to the target formation, i.e.,

lim
t→∞

pi(t) − p∗

i = 0d, i ∈ V f

Proof. In view of (3), (13), and (15), followers’ position error
dynamics are given by
̇̃pi =ui

= − β
∑
j∈N i

(
pij − Qijxi

)
= − β

∑
j∈N i

(
pij − Qijx + Qijx − Qijxi

)
= − β

∑
j∈N i

(
pij − Qijx

)
+ β

∑
j∈N i

Qijei

= − β
∑
j∈N i

(
p̃i − p̃j

)
+ β

∑
j∈N i

Qijei,

which can be rewritten into the following vector form:
̇̃pf = −βLflp̃l − βLff p̃f + βEe,

where

E = diag
(∑

j∈N nl+1
Q(nl+1)j, . . . ,

∑
j∈N n

Qnj

)
.

We consider the following Lyapunov function:

Vp =
1
2
p̃T
f p̃f ,

whose derivative is

V̇p =p̃T
f
̇̃pf

= − βp̃T
f Lflp̃l − βp̃T

f Lff p̃f + βp̃T
f Ee.

rom Theorem 4, it follows the face p̃l → 0, e → 0, t → ∞.
hen, V̇p → −βp̃T

f Lff p̃f . In view of the fact that the subgraph Gf is
connected from Assumption 3, we can obtain that all eigenvalues
of Lff are positive using the Gerschgorin disk theorem (Horn &
Johnson, 2012). Thus, Lff is positive definite. Therefore, we have
p̃ → 0, t → ∞. ■
f

8

5. Simulations

To verify the effectiveness of the proposed formation control
methods in Sections 4.1 and 4.2, this section gives simulations to
illustrate our results in R2. We consider 10 agents, 4 of which are
leaders, and the remaining 6 agents are followers. (See Box I.)

A nominal configuration lying in R3 is designed that satisfies
Assumption 2. This nominal configuration (See Fig. 2(a) and (b))
is given as: r1 =

[
2 −2 1

]T , r2 =
[
3 −1 −1

]T , r3 =

3 1 1
]T , r4 =

[
2 2 −1

]T , r5 =
[
0 2 1

]T , r6 =[
0 −2 −1

]T , r7 =
[
−3 −2 0

]T , r8 =
[
−3 2 0

]T , r9 =[
−3 0 −1

]T , r10 =
[
−5 0 1

]T .
We set the augmented linear transformation matrix as

Ā =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
1 0 0 15
0 1 0 0

]
t ∈ [ 0, 50) s[

2 cos 30◦ 2 sin 30◦ 0 30
−2 sin 30◦ 2 cos 30◦ 0 0

]
t ∈ [ 50, 100) s[

− 1 0.5 0 34
0 1 0 − 10

]
t ∈ [100, 150) s[

1 2
3

4
3 20

0 1 1 − 10

]
t ∈ [150, 200) s[

0 8
3

4
3 0

0 0 − 3 − 10

]
t ∈ [200, ∞) s

hich is a piecewise function of t , and known by only 4 leaders,
.e., V l = {1, 2, 3, 4}. Agents will first form an initial formation,
which is generated by projecting the nominal configuration to the
xOy plane. Then, according to the step change of Ā, agents will
sequentially perform four linear transformations.

Leaders are employed with the following feedback controller
to achieve their desired positions:

ui = −kl(pi − Ār̄i), i ∈ V l (17)

where kl is a positive gain.

5.1. Simulation 1: Stress matrix-based linear formation control

With the nominal configuration, the stress matrix Ω is com-
puted by using the topology optimization proposed in Xiao et al.
(2022) to satisfy Assumption 1. The control parameters for (9) and
(17) are selected as kl = 3, kf = 10.

The simulation results are presented in Figs. 3 and 4. Fig. 3
illustrates the changes in the overall formation evolution process.
Initially, the group of agents are arranged in a double-column
formation at t = 0 s. Upon the simulation start, the team of
agents rapidly converge to the first desired target formation at
t = 48 s. Then, with the step changes of Ā, agents sequentially
form a new series of target formations. The resulting formations
at t = 98 s and t = 148 s can be transformed by scaling, rotation,
shearing, flipping and their combinations from the formation
at t = 48 s. This means that the proposed linear formation
control method has the ability to achieve the transformations
that the affine manner can realize. Furthermore, from the results
at t = 198 s and t = 248 s, it is shown that more complex
maneuver behaviors can also be achieved by the proposed linear
formation control method. It is clear to see that agents 4, 5, and
8 are non-collinear at t = 198 s, whereas collinear at t = 48
s. This observation leads to the conclusion that this formation
variation is not characterized by an affine transformation, but
rather by a general linear transformation. Moreover, by utilizing
the proposed linear formation control method, new collinear
relationships can also be constructed. As it can be seen from the
formation shape at t = 248 s, agents 2, 4, 6, and 9 are collinear,
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Ω =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.4900 −0.5269 −1.2240 1.1241 −0.2619 −0.5932 −0.1954 0.1874 0 0
−0.5269 2.3178 −0.3561 −1.0728 0.3643 −1.3365 0 0.1823 0 0.4276
−1.2240 −0.3561 2.5230 −0.7408 −1.3949 0.3358 0.1918 0 0.6654 0
1.1241 −1.0728 −0.7408 1.3043 −0.3552 −0.0650 0 −0.0560 −0.1385 0

−0.2619 0.3643 −1.3949 −0.3552 2.4248 0.4777 0 −0.9740 0 −0.2810
−0.5932 −1.3365 0.3358 −0.0650 0.4777 2.7812 −0.9306 0.0085 −0.9187 0.2408
−0.1954 0 0.1918 0 0 −0.9306 1.9232 0.7013 −0.3817 −1.3087
0.1874 0.1823 0 −0.0560 −0.9740 0.0085 0.7013 2.0185 −1.4947 −0.5731

0 0 0.6654 −0.1385 0 −0.9187 −0.3817 −1.4947 1.9952 0.2726
0 0.4276 0 0 −0.2810 0.2408 −1.3087 −0.5731 0.2726 1.2220

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Box I.
Fig. 3. Trajectories of agents in simulation 1.
Fig. 4. Position tracking errors in simulation 1.
c
k

hereas they are always non-collinear in any other formations in
ig. 3.
Fig. 4 illustrates the position tracking errors of agents. It is

lear to see that the position tracking errors converge to zero after
very step change of Ā, which implies the effectiveness of the
roposed stress matrix-based linear formation tracking control
aws (17) and (9).

.2. Simulation 2: Estimation-based linear formation control

The communication topology among followers is shown in
ig. 2(c) satisfying Assumption 3 for connectivity. Displacements
ssociated with edges (3, 4), (1, 2), and (1, 3) are measurable by
9

followers 5, 6, and 7, respectively. This guarantees Assumption 4,
because we can verify that {r̄34, r̄12, r̄13} linearly span R3. The
ontrol parameters for (17), (11), (12), and (13) are selected as
l = 7, α1 = α2 = 7, β = 7.
The results of the simulation are presented in Figs. 5–7. Similar

to simulation 1, Fig. 5 demonstrates that the team of agents
can also sequentially achieve the desired target formations by
employing the estimation-based linear formation control laws
(11)–(13). However, as observed in Fig. 6, following each step
change of Ā, the error initially increases before subsequently
decreasing. This behavior arises because the estimators need time
to re-estimate the new linear formation parameters. The precise
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Fig. 5. Trajectories of agents in simulation 2.
Fig. 6. Position tracking errors in simulation 2.
Fig. 7. Estimation errors in simulation 2.
stimation performance of the proposed estimators is shown in
ig. 7, which ensures the convergence of position tracking errors.

. Conclusion

We have proposed the linear formation control architecture
or multi-agent systems. This method requires a pre-defined
ominal configuration, whose dimension can be higher than
gents’ coordinates. We propose two kinds of distributed for-
ation control methods with and without the stress matrix,

espectively.
The first method is the stress matrix-based linear formation

ontrol scheme, representing an extension of the existing affine
10
formation control approach. When the stress matrix is unavail-
able, we have proposed the estimation-based linear formation
control method, which relies on the measurements of leaders’
edges. The estimation-based method only requires a connected
graph. Therefore, the utilized topological graph can be sparser
than that in the stress matrix-based method, but distributed
communication with local estimations is required.

In the future, there will be several important research topics,
such as distributed computing of stress matrix, nonlinear forma-
tion transformation, and distributed linear formation parameters
decision. It is also meaningful to find an efficient stress matrix
computation method for large-scale formation.
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ppendix A. Proof of Lemma 1

In view of the relationship Xzi =
(
zTi ⊗ Ir

)
vec (X), it is con-

idered

Im ⊗ X) z =

⎡⎢⎣Xz1
...

Xzm

⎤⎥⎦ =

⎡⎢⎣
(
zT1 ⊗ Ir

)
vec (X)

...(
zTm ⊗ Ir

)
vec (X)

⎤⎥⎦
= (Z ⊗ Ir) vec (X) .

he proof is completed.

ppendix B. Proof of Lemma 2

.1. Proof of equivalence of (1) and (2):

According to Section 2.3.2, {r̄i}ni=1 linearly span Rf+1 if and only
f there exist f + 1 vectors that are linearly independent, which
mplies rank(R̄) = f + 1 and n > f + 1.

.2. Proof of equivalence of (1) and (3):

It is considered the series of d(f + 1) matrices
{
Eij

}
, where

ij ∈ Rd×(f+1) (i = 1, . . . , d and j = 1, . . . , f + 1). Only the
i, j)th entry of Eij is 1 and others are 0. Then, we can construct
he following d(f + 1) vectors:(
In ⊗ Eij

)
r̄
}
i=1,...,d; j=1,...,f+1 (18)

t is clear that T (r̄) =
{
(In ⊗ Ā)r̄, Ā ∈ Rd×(f+1)

}
is the linear

pan of those vectors in (18). Therefore, dim(T (r̄)) is equal to the
umber of linearly independent vectors in (18).
Now we derive the number of linearly independent vectors in

18). It is considered the set of coefficients θij ∈ R that satisfy

d

i=1

f+1∑
j=1

θij
(
In ⊗ Eij

)
r̄ = 0nd. (19)

ccording to Lemma 1, we can rewrite (19) in the following form,

d

i=1

f+1∑
j=1

θij
(
R̄ ⊗ Id

)
vec

(
Eij

)
= 0nd. (20)

q. (20) admits the following system of linear equations, i.e.,

R̄ ⊗ Id
)
θ = 0nd, (21)

here θ = vec (Θ) ∈ Rd(f+1), [Θ]ij = θij.
First, we study the sufficiency of (1) for (3). From the equiva-

ence of (1) and (2), if {r̄i}ni=1 linearly span Rf , it has

rank
(
R̄ ⊗ Id

)
= rank

([(
R̄ ⊗ Id

)
0nd

])
= d (f + 1) .

n view of Section 2.5, we know that (21) has the unique solution,
.e., θ = 0d(f+1), which means vectors in (18) are also linearly
ndependent. As a result, we can obtain dim(T (r̄)) = d(f + 1).
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Second, we consider the necessity of (1) for (3). From the
equivalence of (1) and (2), if {r̄i}ni=1 do not linearly span Rf , it
has

rank
(
R̄ ⊗ Id

)
= rank

([(
R̄ ⊗ Id

)
0nd

])
< d (f + 1) .

According to Section 2.5, we know that (21) has infinite solu-
tions. There must exist nonzero solutions in terms of θ. Conse-
quently, vectors in (18) are also linearly dependent, which means
dim(T (r̄)) < d(f + 1).

B.3. Proof of equivalence between (1) and (4) under Assumption 1:

Since Ω is the stress matrix of the framework (G, r̄), it has∑
j∈N i

ωij(r̄i − r̄j) = 0f+1, i = 1, . . . , n. (22)

y multiplying the linear transformation matrix Ā on both sides
f (22), it gives∑

∈N i

ωij(Ār̄i − Ār̄j) = 0d, i = 1, . . . , n, (23)

hich implies T (r̄) ⊆ null(Ω ⊗ Id).
According to Assumption 1, we know dim (null (Ω ⊗ Id)) =

(f + 1). In view of the equivalence of (1) and (3), we also know
im(T (r̄)) = d(f + 1). Thus, it is concluded T (r̄) = null(Ω ⊗ Id).
he proof is completed.
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