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Abstract—The aim of this study is to investigate the problem of
cooperative multi-robot variation parameter design for dynamic
formation maneuvers with bearing constraints. Notably, scaling
and translation are relatively economical bearing-preserving
motions in terms of formation changes. Typically, the variation
parameters, i.e., the desired scaling size and translation vector,
are designed offline a priori, and it is often challenging to
dynamically generate the desired formation in response to a
changing ambient environment. This paper proposes an online
distributed design method to determine the variation parameters
of an entire formation. First, local variation policies are generated
by the proposed high-order control barrier functions based on
received local excitations from the environment. Subsequently,
using the distributed average tracking technique, consensus filters
are employed to integrate various local variation policies in
a weighted-average manner, which ensures that the bearing is
maintained in dynamic formation maneuvers. Finally, numerical
simulations and experiments are conducted to demonstrate the
effectiveness of the proposed method.

Note to Practitioners—This paper is motivated by the neglect
of the research on the automatic co-adjustment of the formation
variation parameters in most existing formation control schemes,
which rely on fixed and pre-defined desired variation parameters
(scaling size and translation vector). To address this limitation,
this paper suggests an online distributed design method to
determine the variation parameters of an entire formation in
dynamic ambient environments. The proposed method consists
of three parts: 1) By considering received local excitations from
the environment as perturbations to asymptotically stable virtual
systems, unconstrained local variation policies are generated. 2)
By employing high-order control barrier functions, we solve the
bounded magnitude constraints for distributed average tracking
(DAT) algorithms and the minimum scale constraint for collision
avoidance, leading to the generation of constrained local variation
policies. 3) By using DAT algorithms, all robots can cooperatively
obtain a uniform variation parameter, which is exactly the
weighted average of the constrained local variation policies. This
ensures that the bearing is maintained in dynamic formation
maneuvers. Therefore, the proposed method can be deployed to
multi-robot systems in a distributed manner. Finally, numerical
simulations and experiments are conducted to demonstrate the
feasibility of the proposed method and its potential in industrial
applications.

Index Terms—Formation control, formation transformation,
multi-robot systems.
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I. INTRODUCTION

COOPERATION of multi-robot systems is a research area
with growing interest. Formation control, an important

multi-robot cooperative pattern, has been applied to various
scenarios, including aerial cooperative transportation [1], for-
est firefighting [2], surveillance [3], agricultural operations [4],
Earth observation [5], and space debris capture [6].

Specific formation motions are often preferred for formation
maneuvers under sensing constraints. For example, a signifi-
cant issue that cannot be ignored in vision-based formation
tasks, is the limited detection range of vision sensors [7]-
[8]. Bearing-preserving motions are favorable as they retain
bearing relationships among pairwise robots [9]. Typically,
scaling and translation are two types of bearing-preserving
motions.

Translation motion renders the integrated movement of the
formation group without changing its geometric shape or size.
By adopting a consensus algorithm, formation translation can
be achieved based on the leader-follower structure [10]. Time-
varying translation is further considered in [11], where the
reference translation signal available to all robots is included
in the feedforward control term. In [12], Miao et al. proposed
a formation control method for nonholonomic robots based on
the distributed estimation for the leader’s states. The authors
show that formation tracking errors can converge to zero
asymptotically.

Scaling transformation refers to altering the formation size
while maintaining its geometric pattern. In [13], Hou et al.
proposed the dynamic region following formation control
(DRFFC) method to control a swarm of robots. In this method,
robots are driven into the desired region in a centralized
manner. In [15], a distributed scaling control method was
proposed for networked robots, in which only two robots were
familiar with the desired scale. In [16], given the condition
that only two leaders were familiar with the desired forma-
tion scale, a distributed estimation-based control method was
designed for the remaining robots to automatically form the
prescribed formation. The complex Laplacian was used to
manage the planar formation scaling problem in [17]-[18],
where the leader-follower interactive topology was required
to be 2-rooted. Yang et al. [19] proposed a scaling con-
trol method in the framework of affine formation control.
By relying on the estimations of the unknown formation
parameter, several formation control laws were developed
with two leaders [20]-[21] and a single leader [22] familiar
with the desired formation size. Time delays are additionally
considered in [23], where the authors designed a predictive
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observer-based control scheme for formation stabilization.
Onuoha et al. [24] extended the affine formation-based scaling
control method to triple-integrator systems, and proposed a
sampled-data controller to deal with practical periodic intervals
limitation. Zhao and Zelazo [25] proposed a bearing-based
method for realizing the formation scale. Uncertainties and
input saturation were studied in [26]. In [27], the authors
revealed that triangulations are infinitesimally shape-similar.
By invoking this property, the bearing-only control method
was proposed to maintain triangulations for planar formation
keeping, where the formation size is determined by two
robots. Although many translation and scaling control methods
have been developed, determining or designing the formation
scaling size and translation motions in a distributed manner
to accommodate dynamic environments remains a challenging
problem.

Notably, for every single robot, obtaining local varia-
tion policies according to local environmental excitations is
straightforward, but uniform variation parameters are nec-
essary for the entire formation maneuver. If we treat lo-
cal variation policies as reference signals of the distributed
average tracking (DAT) algorithm, it is possible to obtain
uniform formation variation parameters, which are exactly
the weighted average of the local variation policies. Linear
DAT algorithms have been applied to reach the average
consensus of multi-robot systems with bounded errors [28]. By
employing the signum function, nonsmooth DAT algorithms
have been proposed to track the average of multiple time-
varying reference signals with bounded derivatives [29]-[30].
By combining potential functions, the DAT algorithm was
used to track the average of a class of refer velocity signals
and realize obstacle avoidance for a swarm of robots [31].
In [32], Chen et al. presented the connection between the
DAT and DRFFC methods [13], demonstrating that the DAT-
based DRFFC method could exhibit richer formation behavior
that facilitates obstacle avoidance. However, reference signals
(local variation policies) often must to be constrained to
some domain for DAT algorithms, such as those utilizing
bounded derivatives [33]-[34] or bounded accelerations [35].
Moreover, in practical formation tasks, local variation policies
also require minimum-scale constraints to avoid collisions.
Therefore, it is important to ensure that local variation policies
satisfy the desired constraints.

The control barrier function (CBF) was introduced to trans-
form safety constraints into state-dependent linear inequality
constraints on the inputs [36]. In [37]-[38], the high-order CBF
(HOCBF) was proposed to deal with arbitrarily high relative
degree constraints. [40] stipulated a sufficient condition for
the control-sharing property of multiple CBFs, which can be
used to analyze the conflict between CBFs. The designer
must exercise caution when designing specific forms of the
desired constraints of local variation policies to constitute
CBFs because unreasonable constraint expressions often lead
to conflicts and loss of the control-sharing property.

This paper addresses the challenges of dynamically generat-
ing desired formations in response to changing ambient envi-
ronments, which has been rarely studied in previous research.
Typically, the desired formations are given a priori. The lack

of automatic co-adjustment of formation variation parameters
limits the flexibility and adaptability of formation behaviors.
To address this issue, we propose an online distributed design
method for determining the scaling and translation parameters
of an entire formation. The proposed method can maintain
the bearing relationships among pairwise robots during dy-
namic maneuvers, and significantly increase the flexibility
and practicability of formation behaviors. First, the excitation
vectors received from the environment are regarded as external
perturbations to asymptotically stable virtual triple-integrator
systems, which can generate unconstrained local variation
policies. Second, by employing HOCBFs, the bounded mag-
nitude constraint for DAT algorithms and the minimum-scale
constraint for collision avoidance are solved. We demonstrate
that the constituted HOCBFs experience no conflicts, implying
that HOCBFs have the control-sharing property. Next, DAT-
based consensus filters are proposed to integrate constrained
local variation policies in a weighted-average manner. All
the robots can obtain uniform formation scaling and trans-
lation parameters in a distributed manner. Consequently, the
bearing constraints among the different robots are naturally
maintained.

The main contributions of this study are summarized as
follows:

1) By using projection operations, the robots’ environmen-
tal excitation vectors are converted to direct excitation
forms of formation variation. Compared with the for-
mation maneuver methods with pre-defined parameters
[21]-[25], the formation parameters herein can be self-
adjusted in response to the environment, so it is signif-
icantly more flexible and practical.

2) The HOCBFs are designed to solve the constraints of
local variation policies. The control-sharing property of
the HOCBFs is rigorously proved. In this study, the
considered constraints in CBFs do not contain bounded
functions, which makes the input constraints highly cou-
pled with states. Therefore, the analysis of the control-
sharing property is more complex and challenging than
[40]-[41], where the boundedness of sin(·) and cos(·)
functions is utilized to estimate the inputs constraints
without state couplings.

3) DAT-based consensus filters, which can integrate local
variation policies in a weighted-average manner, are pro-
posed to obtain uniform formation variation parameters.
This approach ensures that bearings will be preserved
in the resulting formation maneuvers. Different from
the applications in [31]-[32], this paper first uses DAT
algorithms in the formation variation parameter decision
problem. The tracking ability of the DAT algorithms on
the mean is used to achieve the weighted average re-
quired for cooperative decision-making. We expand the
possible applications of the DAT algorithm to formation
tasks.

The remainder of this paper is organized as follows. First,
some preliminaries and the formation problem are presented
in Section II. The design method for the formation scaling
parameters is described in Section III. Following the steps
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described in Section III, the translation parameters are de-
scribed in Section IV. Finally, the simulations and experiments
conducted to verify the proposed design method are discussed
in Section V.

II. PRELIMINARIES AND PROBLEM DESCRIPTION

TABLE I
LIST OF KEY NOTATIONS AND VARIABLES

Symbol Quantity

p∗ ∈ R3 Reference trajectory

r∗i ∈ R3 Nominal formation of ith robot

pi ∈ R3 Position of ith robot

f i ∈ R3 Environmental excitation for ith robot

ρi ∈ R Local scaling policy of ith robot

vκi ∈ R Scaling excitation of ith robot

µκi ∈ R Input for the local scaling policy dynamics

κ∗ ∈ R Nominal scale

κmin ∈ R Minimum scale

kκf ∈ R+ Gain for scaling excitation

kκ, aκ, bκ ∈ R+ Control gains for local scaling policy

εκ ∈ R+ Maximum magnitude of local scaling policy

h1 : R3 → R Magnitude constraints of local scaling policy

h2 : R→ R Minimum constraints of local scaling policy

δ1κ, δ2κ, δ3κ ∈ R+ Parameters of class K functions for h1
γκ ∈ R+ Parameter of the class K function for h2
κi ∈ R Scaling parameter of ith robot

uκi ∈ R Input for the scaling parameter dynamics

ϕκ, πκ ∈ R+ Control gains for scaling parameter

wi ∈ R3 Local translation policy of ith robot

uqi ∈ R3 Input for the translation parameter dynamics

kqf ∈ R+ Gain for translation excitation

kq , aq , bq ∈ R+ Control gains for local translation policy

εq ∈ R+ Maximum magnitude of local translation policy

h3 : R9 → R Magnitude constraints of local translation policy

γq ∈ R+ Parameter of the class K function for h3
qi ∈ R3 Translation parameter of ith robot

µqi ∈ R3 Input for the local translation policy dynamics

ϕq , πq ∈ R+ Control gains for translation parameter

A. Control Barrier Function

This function is considered a general affine control system:

ẋ = f (x) + g (x) u x (t) ∈ Rc. (1)

Function b (x) : Rc → R is continuously mth order
differentiable.

Definition 1: (Relative degree [38],[40]) The relative degree
of b (x) with respect to system (1) is the number of times
needed to differentiate it along the system dynamics until the
control u is explicitly demonstrated.

First, a series of functions θi (x) : Rc → R is defined as
follows:

θ0 (x) := b (x) ,

θ1 (x) := θ̇0 (x) + α1 (θ0 (x)) ,

...

θm (x) := θ̇m−1 (x) + αm (θm−1 (x)) ,

where αm (·) denotes the class K function of its argument.
According to the defined functions, a series of invariant sets

can be defined as follows:

C1 :=
{

x ∈ Rd : θ0 (x) ≥ 0
}
,

C2 :=
{

x ∈ Rd : θ1 (x) ≥ 0
}
,

...

Cm :=
{

x ∈ Rd : θm−1 (x) ≥ 0
}
.

Function b (x) with relative degree m is a CBF (HOCBF, if
m > 1), if there exist differentiable class K functions α1 (·) ,
α2 (·) ... αm (·), such that

Lmf b (x) +LgL
m−1
f b (x) u +

∂mb (x) u
∂tm

+O (b (x)) + αm (θm−1 (x)) ≥ 0,
(2)

for all x ∈ C1
⋂
C2
⋂
, ...,

⋂
Cm, where O (·) denotes the

remaining Lie derivatives along f and the partial derivatives
with respect to t with a degree less than or equal to m− 1.

Lemma 1 ([38] Theorem 5): If the initial value is x (t0) ∈
C1
⋂
C2
⋂
, ...,

⋂
Cm, and if any Lipschitz continuous con-

troller u satisfies (2), set C1
⋂
C2
⋂
, ...,

⋂
Cm is forward in-

variant for system (1).

B. Graph Theory

A graph G is a pair (V ,E), where V = {v1, ..., vn} is a non-
empty finite set of nodes and E ⊆ V × V is a set of ordered
pairs of nodes, called edges. An edge (vj , vi) represents the
communication path from node vj to node vi.

The adjacency matrix is A = [aij ] ∈ Rn×n, where aij = 1,
if (vj , vi) ∈ E , and aij = 0, if (vj , vi) /∈ E . In general, aii = 0
is defined. The set N i =

{
j ∈ V : (vj , vi) ∈ E

}
contains all

neighbors of node vi.
The Laplacian matrix is L = [lij ] ∈ Rn×n, where lij =

−aij , if i 6= j and lij =
∑
j∈N i

aij , if i = j. The incidence
matrix is H = [hik] ∈ R|V|×|E|, where

hik =

 1 if vi is the is the head of kth edge
−1 if vi is the is the end of kth edge
0 otherwise

.

The incidence matrix and Laplacian matrix satisfy L =
HHT.

C. Problem Description

Assumption 1: The interactive graph G among robots is
connected and undirected.
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Fig. 1. Formation maneuvers with scaling and translation.
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Fig. 2. Framework of the proposed distributed formation scaling and translation parameters design method with formation control.

The connectivity of the graph is the basic assumption of
networked systems [10]. Further, when using wireless com-
munication, it is generally possible to establish bilateral com-
munication if the wireless signals of two robots are reachable,
so it is assumed that the graph is also undirected. Assumption
1 is consistent with the practical cooperative robotic systems.

The aim of this study is to investigate the problem of de-
signing formation variation parameters for dynamic maneuvers
with bearing constraints. Note that only bearing-preserving
motions, including scaling and translation, are permitted. It is
considered that n robots exhibit double-integrator dynamics:

p̈i = ui, (3)

where pi ∈ R3 denotes the Cartesian position of the ith robots.
First, some definitions are provided herein.

Reference trajectory: The reference trajectory p∗(t) ∈ R3

is a given trajectory of the formation, which is known to all
robots. It can be determined by a specific mission or some
path-planning methods.

Nominal formation: r∗ =
[
(r∗1)

T · · · (r∗n)
T
]T
∈ R3n is

the nominal formation with respect to the reference trajectory
p*, which is a typical constant geometric pattern. The ith robot
is familiar with its own nominal formation and that of its
neighbors {r∗j}j∈N i∪{i}.

Each robot can receive a local excitation vector f i(t) ∈ R3,
which represents the locally recognized formation variation
tendency. These excitation vectors can be different, time-

varying, and discontinuous. f i(t) is assumed to satisfy the
following assumption:

Assumption 2: f i(t) is bounded, satisfying ||f i(t)||2 < σ,
where σ is a finite positive value.

The computation of f i(t) is carried out by the robot itself
in response to the environment, and the robot can restrict f i(t)
in the computational algorithm. Therefore, the boundedness of
f i(t) is achievable.

In the proposed method, the entire formation can be scaled
from the nominal formation and translated from the reference
trajectory. Each robot maintains a formation scaling parameter
κi(t) ∈ R with respect to the nominal formation and a
translation parameter qi(t) ∈ R3 with respect to the reference
trajectory.

To achieve dynamic formation maneuvers with bearing
constraints, robots must reach a consensus on the scaling and
translation parameters. Therefore, the primary objective of this
study is to cooperatively generate the formation scaling and
translation transformations according to the local excitation
vectors {f i(t)}ni=1, such that

lim
t→∞

κi(t)− κj(t) = 0,

lim
t→∞

qi(t)− qj(t) = 0.

Note that we will omit argument t when it is clear that we
are referring to ρi(t), wi(t), κi(t), qi(t), and f i(t).

For clarity, the notations and variables are listed in Table 1.
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0. Thereby, it has j ∈ N̂ i and k /∈ N̂ i.

The framework of the proposed method is illustrated in
Fig. 2. First, each robot generates the local scaling ρi ∈ R and
translation wi ∈ R3 policy, according to the local excitation
vector f i. Owing to the difference in f i, the generated local
variation policies are also different. Then, the developed DAT-
based consensus filters integrate the diverse local variation
policies to reach an agreement in a weighted-average manner.
Consequently, the desired position pdi = p∗ + qi + κir∗i is
provided to the distributed formation controller of the robots.

By using an appropriate f i, the formation can be trans-
formed to realize obstacle avoidance, gathering, and other
behaviors. The remainder of this paper introduces our design
methods for determining the formation variation parameters.

III. FORMATION SCALING PARAMETERS DESIGN

This section describes the manner in which the formation
scaling parameters reach an agreement for bearing-preserving
maneuvers, as illustrated in Fig. 2. First, the local excitation
vector f i is transformed into a formation scaling excitation,
generating a nominal control for the local scaling policy with-
out constraints. Then, by using the elaborately designed forms
of the bounded magnitude and minimum-scale constraints,
we constitute HOCBFs to generate constrained local scaling
policies. Finally, a developed consensus filter ensures that the
formation scaling parameters reach an agreement, which is
exactly the weighted average of the constrained local scaling
policies.

A. Unconstrained Local Scaling Policy Design

The dynamics of the local scaling policy ρi ∈ R are
governed by the following virtual triple-integrator system (4):

...
ρ i = µiκ, (4)

where µiκ is the input.

The influence of f i on the formation scaling excitation is
defined as

viκ =


1∣∣∣N̂ i

∣∣∣
∑
j∈N̂ i

∥∥Projj (f i)
∥∥
2∥∥r∗j − r∗i

∥∥
2

N̂ i 6= ∅

0 N̂ i = ∅

(5)

with

N̂ i =
{
j ∈N i : Projj (f i)

T (r∗j − r∗i
)
> 0
}
,

Projj (f i) =
fTi
(
r∗j − r∗i

)∥∥r∗j − r∗i
∥∥2
2

(
r∗j − r∗i

)
,

where only the formation scale reduction is considered in
N̂ i. Projj (f i) represents the projection of f i along the edge
of the nominal formation

(
r∗j − r∗i

)
. These relationships are

illustrated in Fig. 3.
The environmental excitation f i is transformed into the

formation scaling excitation viκ by (5). The local scaling
policy should change the formation scale size according to
viκ and restore it to the nominal scale κ∗ := 1 when viκ = 0.
The following unconstrained nominal control law is developed
for (4):

µiκ = −kκsiκ − aκρ̈i − bκρ̇i + kκfviκ, (6)

where kκ > 0, aκ > 1, and bκ > 0; kκf > 0 is a gain
that adjusts the effect of f i. A larger kκf allows the scaling
excitation to more easily scale the formation. siκ is the sliding
mode surface designed as follows:

siκ = ρ̈i + aκρ̇i + bκ (ρi − κ∗) . (7)

Theorem 1: Under Assumption 2, with any kκ > 0, aκ > 1,
bκ > 0, and kκf > 0 for the dynamics (4) and control (6),
if viκ = 0, then (ρ̈i, ρ̇i, ρi) converges to (0, 0, κ∗). If viκ 6=
0, then a local scaling policy with the effect of viκ or f i is
generated.

Proof: See Appendix A. �

B. Constrained Local Scaling Policy Design

An unconstrained nominal control for local scaling dynam-
ics (4) is obtained using (6). The following constraints are
considered:

h1 (ρi, ρ̇i, ρ̈i) = ε2κ − [ρ̈i + aκρ̇i + bκ (ρi − κmin)]
2 ≥ 0, (8)

h2 (ρi) = ρi − κmin ≥ 0, (9)

where εκ > 0 and κ∗ > κmin > 0 can be designed.
κmin represents the feasible minimum formation scale. The
constraint h1 (ρi, ρ̇i, ρ̈i) : R3 → R is designed for the
consensus filter, as will be described in the next subsection.
The constraint h2 (ρi) : R → R is designed to constrain the
generated formation scale ρi to no less than the minimum scale
κmin for safety. Constraints (8) and (9) require that ρi, ρ̇i, and
ρ̈i are always in the forward invariant set Cκ, defined as

Cκ :=
{[
ρi ρ̇i ρ̈i

]T ∈ R3 : h1 (ρi, ρ̇i, ρ̈i) ≥ 0, h2 (ρi) ≥ 0
}
.

(10)
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We will omit arguments ρi, ρ̇i, and ρ̈i, when it is clear that
we are referring to h1 (ρi, ρ̇i, ρ̈i) and h2 (ρi). The CBFs are
constructed as follows to solve the constraint problem. For h1,
we consider the following series of functions:

ξ0 :=h1,

ξ1 :=ξ̇0 + γκξ0

=ḣ1 + γκh1

=− 2 [ρ̈i + aκρ̇i + bκ (ρi − κmin)] (aκρ̈i + bκρ̇i)

− 2 [ρ̈i + aκρ̇i + bκ (ρi − κmin)]µiκ

+ γκ

{
ε2κ − [ρ̈i + aκρ̇i + bκ (ρi − κmin)]

2
}
,

(11)

where γκξ0 is a class K function with γκ > 0.
Similarly, for h2, we consider the following series of

functions:

ζ0 :=h2,

ζ1 :=ζ̇0 + δ1κζ0

=ρ̇i + δ1κ (ρi − κmin) ,

ζ2 :=ζ̇1 + δ2κζ1

=ρ̈i + δ1κρ̇i + δ2κ [ρ̇i + δ1κ (ρi − κmin )] ,

ζ3 :=ζ̇2 + δ3ζ2

=µiκ + δ1κρ̈i + δ2κ (ρ̈i + δ1κρ̇i)

+ δ3κ {ρ̈i + δ1κρ̇i + δ2κ [ρ̇i + δ1κ (ρi − κmin )]}
=µiκ + (δ1κ + δ2κ + δ3κ) ρ̈i

+ (δ2κδ1κ + δ3κδ1κ + δ3κδ2κ) ρ̇i

+ δ3κδ2κδ1κ (ρi − κmin ) ,

(12)

where δ1κζ0, δ2κζ1, and δ3ζ2 are class K functions with δoκ >
0, o ∈ {1, 2, 3}.

The relative degrees of h1 and h2 with respect to system (4)
are 1 and 3, respectively. Hence, h2 is a HOCBF that satisfies
ζ3 ≥ 0.

According to Lemma 1, to satisfy the constraints (8) and
(9), the modified control µiκ from a nominal control µref

iκ can
be obtained by the following HOCBF quadratic programming
(QP): 

µiκ = arg min
1

2

(
µiκ − µref

iκ

)2
s.t.

ξ1 ≥ 0
ζ3 ≥ 0

. (13)

where
µref
iκ = −kκsiκ − aκρ̈i − bκρ̇i + kκfviκ

is the unconstrained nominal control proposed in (6).
Note that both ξ1 and ζ3 are designed for the same control

input µiκ. The existence of the control µiκ must be analyzed.
Alternatively, h1 and h2 exhibit the control-sharing property
[40].

Theorem 2: If the selected parameters of class K functions
in (11) and (12) satisfy (14), then the control µiκ in (13) for the
dynamics (4) must exist with constraints ξ1 ≥ 0 and ζ3 ≥ 0.

1 = δ1κ + δ2κ + δ3κ − aκ − 0.25γκ

aκ = δ2κδ1κ + δ3κδ1κ + δ3κδ2κ − bκ − 0.25γκaκ

bκ = δ3κδ2κδ1κ − 0.25γκbκ

. (14)

Proof: See Appendix B. �
Remark 1: Typically, it is difficult to solve a system

of nonlinear equations (14) using algebraic methods. When
using numerical methods, certain parameters can be fixed.
For example, in our simulation, εκ = 1.5, γκ = 1, and
δ1κ = 1.5 are fixed. Then, one feasible solution is obtained
(see Section V-A).

C. Distributed Scaling Consensus Filter

Diverse local scaling policies are generated using (4), (6),
and (13). Further, a unique formation scaling parameter should
be provided for bearing-preserving motions. The formation
scaling parameter is governed by the following dynamics:

κ̈i = uiκ. (15)

A DAT-based consensus filter is presented in (16), which can
integrate local scaling policies in a weighted-average manner.

uiκ =ρ̈i − aκ (κ̇i − ρ̇i)− bκ (κi − ρi)

− ϕκ
∑
j∈N i

sgn (κi − κj)− πκ
∑
j∈N i

sgn (κ̇i − κ̇j) ,

(16)
where the following conditions should be satisfied:{

ϕκ > n (n− 1) εκ

πκ > ϕκ + n (n− 1) εκ
. (17)

Theorem 3: Under Assumption 1, if (17) is satisfied, the
DAT-based consensus filter (16) can enforce formation scaling
parameters with dynamics (15) to reach a consensus, which
is exactly the weighted average of constrained local scaling
policies.

Proof: See Appendix C. �

D. Distributed Formation Scaling Design Method

Based on the preceding analysis, the proposed online dis-
tributed formation scaling design method for the dynamics of
the local scaling policy (4) and formation scaling parameter
(15) can be summarized in (18), (19), and (20).

µref
iκ = −kκsiκ − aκρ̈i − bκρ̇i + kκfviκ (18)

µiκ = arg min
1

2

(
µiκ − µref

iκ

)2
s.t.

ξ1 ≥ 0
ζ3 ≥ 0

(19)

uiκ =ρ̈i − aκ (κ̇i − ρ̇i)− bκ (κi − ρi)

− ϕκ
∑
j∈N i

sgn (κi − κj)− πκ
∑
j∈N i

sgn (κ̇i − κ̇j)

(20)
where the parameters satisfy aκ > 1; bκ, kκ, kκf , εκ, γκ, δ1κ,
δ2κ, δ3κ are positive gains, and

1 = δ1κ + δ2κ + δ3κ − aκ − 0.25γκ

aκ = δ2κδ1κ + δ3κδ1κ + δ3κδ2κ − bκ − 0.25γκaκ

bκ = δ3κδ2κδ1κ − 0.25γκbκ

ϕκ > n (n− 1) εκ

πκ > ϕκ + n (n− 1) εκ

. (21)
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IV. FORMATION TRANSLATION PARAMETER DESIGN

This section describes the manner in which the forma-
tion translation parameter reach an agreement for bearing-
preserving maneuvers. Unlike the local scaling policy design,
the local excitation vector f i can be exerted directly on forma-
tion translation, and the minimum constraint is unnecessary.
The other steps are similar to those described in Section III
for formation scaling parameter design.

A. Unconstrained Local Translation Policy Design

It is considered that the local translation policy wi ∈ R3

is governed by the following virtual triple-integrator system
(22): ...wi = µiq, (22)

where µiq is the input.
The unconstrained nominal control law is designed as

follows:

µiq =
...p ∗−kqsiq−aq (ẅi − p̈∗)−bq (ẇi − ṗ∗)+kqf f i, (23)

where kq > 0, aq > 1, and bq > 0; kqf > 0 is a gain that
adjusts the effect of f i. A larger kqf allows the translation
excitation to more easily translate the formation. siq is the
sliding mode surface, which is defined as

siq = (ẅi − p̈∗) + aq (ẇi − ṗ∗) + bq (wi − p∗) . (24)

Theorem 4: Under Assumption 2, with any kq > 0, aq > 1,
bq > 0, and kqf > 0 for the dynamics (22) and control (23), if
f i = 0, then (ẅi, ẇi,wi) converges to (0, 0, 0). If f i 6= 0, then
a local translation policy with the effect of f i is generated.

Proof: The proof of this result is quite similar to that of
Theorem 1; and hence, it is omitted. �

B. Constrained Local Translation Policy Design

Unlike formation scaling, it is unnecessary to constrain the
minimum formation translation. Note that only one constraint
exists for formation translation policies:

h3 (wi, ẇi, ẅi) = ε2q − ‖siq‖
2
2 ≥ 0, (25)

where εq > 0 can be designed. The constraint h3 (wi, ẇi, ẅi) :
R9 → R is designed for the consensus filter, as will be
described in the next subsection. It requires that wi, ẇi, and
ẅi are always in the forward invariant set Cq , defined as

Cq :=
{[

wT
i ẇT

i ẅT
i

]T ∈ R9 : h3 (wi) ≥ 0
}
. (26)

We will omit arguments wi, ẇi, and ẅi when it is clear that
we are referring to h3 (wi, ẇi, ẅi). We consider the following
series of functions:

ς0 =h3,

ς1 =ς̇0 + γpς0

=ḣ3 + γph3

=2sTiq [−...p ∗ + aq (ẅi − p̈∗) + bq (ẇi − ṗ∗)]

2sTiqµiq + γq

(
ε2q − ‖siq‖

2
2

)
,

where γqς0 is a class K function with γq > 0.

The relative degree of h3 with respect to system (22) is 1.
The modified control µiq from a nominal control µref

iq can be
obtained by the following CBF QP:µiq = arg min

1

2

(
µiq − µref

iq

)2
s.t. ς1 ≥ 0

. (27)

where

µref
iq =

...p ∗ − kqsiq − aq (ẅi − p̈∗)− bq (ẇi − ṗ∗) + kqf f i,

which is the unconstrained nominal control proposed in (23).

C. Distributed Translation Consensus Filter

Diverse local translation policies are generated using (22),
(23), and (27). Further, a unique translation parameter should
be given for bearing-preserving motions. The formation trans-
lation parameter is governed by the following dynamics:

q̈i = uiq. (28)

A DAT-based consensus filter is presented in (29), which
can integrate local translation policies in a weighted-average
manner.

uiq =ẅi − aq (q̇i − ẇi)− bq (qi − wi)

− ϕq
∑
j∈N i

sgn
(
qi − qj

)
− πq

∑
j∈N i

sgn
(
q̇i − q̇j

)
,

(29)
where the following conditions should be satisfied:{

ϕq > n (n− 1) εq

πq > ϕq + n (n− 1) εq
. (30)

Theorem 5: Under Assumption 1, if (30) is satisfied, then
the DAT-based consensus filter (29) can enforce formation
translation parameters with dynamics (28) to reach a consen-
sus, which is exactly the weighted average of local translation
policies.

Proof: The proof of this result is quite similar to that of
Theorem 3; and hence, it is omitted. �

D. Distributed Formation Translation Design Method

Based on the preceding analysis, the proposed online dis-
tributed formation translation design method for local trans-
lation dynamics (22) and formation translation parameter
dynamics (28) can be summarized in (31), (32), and (33).

µref
iq =

...p ∗−kqsiq−aq (ẅi − p̈∗)−bq (ẇi − ṗ∗)+kqf f i, (31)

µiq = arg min
1

2

(
µiq − µref

iq

)2
s.t. ς1 (wi) ≥ 0

, (32)

uiq =ẅi − aq (q̇i − ẇi)− bq (qi − wi)

− ϕq
∑
j∈N i

sgn
(
qi − qj

)
− πq

∑
j∈N i

sgn
(
q̇i − q̇j

)
,

(33)
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Fig. 4. The nominal formation and communication topologies in simulation.

where the parameters satisfy aq > 1; bq , kq , kqf , εp, γq are
positive gains, and{

ϕq > n (n− 1) εq

πq > ϕq + n (n− 1) εq
. (34)

Remark 2: By designing the local excitation vector f i, col-
lective behaviors such as obstacle avoidance and containment
can be obtained. When dealing with static obstacles, the local
excitation f i can be generated based on the relative position of
the obstacles and the robots. However, in the case of dynamic
obstacles, their velocities must be considered when designing
the local excitation vector f i. Specifically, when an obstacle is
approaching the robot, a larger excitation should be generated
to enable the robot to maneuver quickly and avoid the obstacle.
On the contrary, when the obstacle is moving away from
the robot, the avoidance requirement needs not be considered
immediately, and a smaller excitation is sufficient.

V. SIMULATION AND EXPERIMENT RESULTS

This section discusses the numerical simulations and ex-
periments conducted to validate the theoretical results of the
proposed online distributed dynamic formation design method.
A classic distributed formation control [10] is utilized for the
generated desired position pdi = qi + κir∗i tracking, where
the parameters qi and κi are obtained using the proposed
formation variation parameter design methods summarized in
Section III-D and IV-D.

A. Simulation
Seven robots are considered in an environment with obsta-

cles. The nominal formation and communication topologies
are illustrated in Fig. 4. The initial formation scale and
translation are set to the nominal formation, such that

κi (0) = ρi (0) = κ∗ = 1,

wi (0) = qi (0) = 0,

pi (0) = pdi (0) .

The parameters for the formation scaling design are selected
as 

δ1κ = 1.5

δ2κ = 1.2576

δ3κ = 1.25

γκ = 1


aκ = 2.7576

bκ = 1.8863

kκ = 10

kκf = 70


ϕκ = 100

πκ = 200

εκ = 1.5

κmin = 0.3

,

ko

ip

kth obstacle

ikn

ikt

2

T
ik k

k

t o

o

kr

Fig. 5. The computation of n̄ik in simulation. ok is the axis of kth cylinder
obstacle. tik is a vector from any point on ok to the robot pi. nik = tik −
tTikok
‖ok‖2

. Thereby, n̄ik =
‖nik‖2−rk
‖nik‖22

nik is obtained.

Fig. 6. The computed f1 from noisy and filtered position measurements in
simulation.

which satisfies Theorems 1, 2, and 3. The parameters for the
formation translation design are selected as{

kq = 10

kqf = 70


aq = 2.8363

bq = 2.0111

γq = 1


ϕq = 300

πq = 600

εq = 7

,

which satisfies Theorems 4 and 5.
Obstacles are modeled as cylinders. The kth cylinder has

axis ok and radius rk. The local excitation vector f i is
generated using the following simple rules:

f i =

4
n̄i,min

‖n̄i,min‖2
‖n̄i,min‖2 ≤ 5

0 ‖n̄i,min‖2 > 5
, (35)

where n̄i,min = min {n̄ik}. n̄ik denotes the vector from the
nearest point of the kth obstacle surface to the ith robot. The
computation of n̄ik is shown in Fig. 5. The rules in (35) imply
that f i is activated only by the nearest obstacle. Note that f i
can be discontinuous.

In the practical system, f i can be disturbed by noisy position
measurements. Therefore, in the simulation, to simulate the
practical environment, Gaussian noise is considered in robots’
position measurements. The noisy measurements are processed
using low-pass filters, which have been widely used to handle
the measurement noises [43]-[44]. Fig. 6 shows the computed
f1 from noisy and filtered position measurements, respectively.
The noisy f1 has more chattering because the noise causes
frequent switching of the min {·} function in (35). The filtered
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Fig. 7. The formation variations in simulation.
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Fig. 8. Local scaling policies and formation scaling parameters in simulation.

f1 does not have chattering, and it can be observed that the
low-pass filters can handle the measurement noise effectively.

The variations in formation are shown in Fig. 7. The refer-
ence trajectory, denoted by the straight pink line, is close to the
obstacles in some areas. With the help of the excitation vector
f i and the proposed dynamic formation maneuver methods, a
uniform translated reference trajectory and scaled formation
are obtained. This result indicates that the robots are adaptive
to an environment with obstacles under bearing constraints.

According to f i, diverse local scaling and translation poli-
cies are generated, as shown in Fig. 8 and Fig. 9, respectively,
where the consensus filters resulting in a uniform formation
scale and translation are highlighted in red.

The performance of the constraints h1 > 0, h2 > 0, and
h3 > 0 is shown in Fig. 10, Fig. 8 and Fig. 11, respectively. It
is observed that the designed constraints of the local variation
policies are well satisfied under the proposed CBFs.

B. Experiment

Fig. 12 presents the framework of the physical experiment
system. The aerial robots utilized are Crazyflies1. The position

1https://www.bitcraze.io/products/crazyflie-2-1/

70

60

50

40

30

20

10-10

010

0

0
-10

10

Fig. 9. Local translation policies and formation translation parameters in
simulation.

Fig. 10. Constraint h1 > 0 in simulation.

Fig. 11. Constraint h3 > 0 in simulation.
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Fig. 12. The framework of experiment system and data flow.

Fig. 13. The nominal formation and communication topologies in the
experiment.

measurements are supported by OptiTrack2 motion capture
systems. The proposed distributed formation scaling and trans-
lation parameter design methods are deployed on ROCK(Pi)
4B Plus3 onboard processors, each of which corresponds to a
single Crazyflie. The control commands are broadcast through
a data relay PC using the Crazyradio PA4 data transmission
module.

Four Crazyflies are considered in a planar obstacle environ-
ment. The nominal formation and communication topologies
are illustrated in Fig.13. The initial formation scale and
translation are set to the nominal formation, such that

κi (0) = ρi (0) = κ∗ = 1,

wi (0) = qi (0) = 0,

pi (0) = pdi (0) .

2https://www.optitrack.com/
3https://wiki.radxa.com/Rockpi4
4https://www.bitcraze.io/products/crazyradio-pa/

Fig. 14. Snapshots of the experiment.
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Fig. 15. The formation variations in the experiment.

The parameters for the formation scaling design are selected
as 

δ1κ = 1.5

δ2κ = 1.2576

δ3κ = 1.25

γκ = 1


aκ = 2.7576

bκ = 1.8863

kκ = 10

kκf = 100


ϕκ = 20

πκ = 40

εκ = 1.5

κmin = 0.3

,

which satisfies Theorems 1, 2, and 3. The parameters for the
formation translation design are selected as{

kq = 10

kqf = 5


aq = 2.8363

bq = 2.0111

γq = 1


ϕq = 45

πq = 90

εq = 3.5

,

which satisfies Theorems 4 and 5.
Two obstacles are modeled as planar circles with the same

radius 0.45 m. The excitation vector f i is generated using the
artificial potential fields from the obstacles.

As shown in Fig. 14 and Fig. 15, four aerial robots with a
square formation move along the obtained translated reference
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Fig. 16. Local scaling policies and formation scaling parameters in the
experiment.
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Fig. 17. Local translation policies and formation translation parameters in
the experiment.

trajectory in an environment with obstacles. The formation
scale is also automatically transformed.

Owing to the effect of the excitation vector f i, diverse
local scaling and translation policies are generated, as shown
in Fig. 16 and Fig. 17, respectively. The team of robots
follows the designed uniform translation parameters qi, which
are shown in red in Fig. 15 and Fig. 17. From Fig. 17, it
is observed that the generated local translation trajectories
of robots 1 and 3 cross the obstacles, but no collisions
occur because the generated local variation policies wi are
responsible only for themselves. qi is the integration of the
local variation policies {wi}ni=1. Hence, if one robot wants to
affect the whole significantly, it must be significantly “loud.”
For example, as illustrated in Fig. 15, robot 1 is always close to
obstacle 2, located at

[
0.71 1.71

]T
. Although its neighboring

robots 2 and 4 can also be affected by obstacle 2 , the distance
from obstacle 2 to these robots is still large. The generated w2

and w4 are only slightly affected by obstacle 2. Hence, the
consequent translation parameter drives robot 1 to continue
approaching obstacle 2, and the magnitude of f1 continues to
increase until w1 becomes significantly distant from obstacle
2. At this time, w1 can cross obstacles far from robot 1.

The performance of constraints h1 > 0, h2 > 0, and h3 > 0
is shown in Fig. 18, Fig. 16 and Fig. 19, respectively. It is
observed that the designed constraints of the local policies are
well satisfied.

Fig. 18. Constraint h1 > 0 in the experiment.

Fig. 19. Constraint h3 > 0 in the experiment.

VI. CONCLUSION

This paper has proposed an online distributed formation
design method for scaling and translation parameters that can
maintain bearing constraints in dynamic formation maneu-
vers. The formation motions were excited by time-varying
discontinuous environmental excitation vectors f i. By using
HOCBF-based control, continuous bounded local variation
policies were generated for DAT algorithms, obtaining uniform
formation variation parameters, which are exactly the weighted
average of local variation policies. Based on simulations with
up to seven robots and experiments with up to four robots, we
demonstrated successful dynamic formation maneuvers. The
robots could scale and translate the entire formation when
required in response to the environment.

Future research will include extending the proposed design
methods to more types of formation variations and more
complex constraints.

APPENDIX

A. Proof of Theorem 1

According to (6) and (7), it has

ṡiκ =
...
ρ i + aκρ̈i + bκρ̇i

= −kκsiκ + kκfviκ.

Then, we select the Lyapunov function Vsiκ =
1

2
s2iκ, whose

derivative is

V̇siκ =siκṡiκ

=− kκs2iκ + kκfsiκviκ.
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According to Assumption 2, viκ is finite. When viκ 6= 0,
siκ can converge to the neighborhood of 0, represented by
siκ = ηiκ (viκ), where ηiκ (viκ) is finite. By substituting siκ =
ηiκ (viκ) into (7), the motion of ρi is obtained by

ρ̈i = −aκρ̇i − bκ (ρi − κ∗) + ηiκ (viκ) .

A Lyapunov function is selected as

Vρi =
1

2

[
(ρi − κ∗)

ρ̇

]T [
aκ + bκ 1

1 1

] [
(ρi − κ∗)

ρ̇

]
,

whose derivative is

V̇ρi = (aκ + bκ) (ρi − κ∗) ρ̇i + ρ̇2i + [(ρi − κ∗) + ρ̇i] ρ̈i

=− (aκ − 1) ρ̇2i − bκ (ρi − κ∗)2

+ [(ρi − κ∗) + ρ̇i] ηiκ (viκ)

=−
[
(ρi − κ∗)

ρ̇

]T [
bκ 0
0 aκ − 1

] [
(ρi − κ∗)

ρ̇

]
+ [(ρi − κ∗) + ρ̇i] ηiκ (viκ)

≤− CκVρi + [(ρi − κ∗) + ρ̇i] ηiκ (viκ) ,

where

Cκ =
min {aκ − 1, bκ}

λmax

([
aκ + bκ 1

1 1

]) .
It shows that (ρ̈i, ρ̇i, ρi) converges to the neighborhood of

(0, 0, κ∗), which means diverse local scaling policies {ρi}ni=1

are generated.
If viκ = 0, it has V̇siκ = −kκs2iκ. The sliding mode surface

siκ = ηiκ (viκ) = 0 can be achieved. Then, according to
V̇ρi ≤ −CκVρi , (ρ̈i, ρ̇i, ρi) returns to (0, 0, κ∗).

B. Proof of Theorem 2

According to {
ξ1 ≥ 0

ζ3 ≥ 0
,

the control µiκ must satisfy{
Pi (ρi, ρ̇i, ρ̈i) ≥ Qi (ρi, ρ̇i, ρ̈i)µiκ

µiκ ≥Wi (ρi)
, (36)

where

Qi (ρi, ρ̇i, ρ̈i) = 2 [ρ̈i + aκρ̇i + bκ (ρi − κmin)] ,

Pi (ρi, ρ̇i, ρ̈i)

=− 2 [ρ̈i + aκρ̇i + bκ (ρi − κmin)] (aκρ̈i + bκρ̇i)

+ γκ

{
ε2κ − [ρ̈i + aκρ̇i + bκ (ρi − κmin)]

2
}

=−Qi (ρi) (aκρ̈i + bκρ̇i) + γκ

(
ε2κ −

1

4
Q2
i (ρi)

)
,

Wi (ρi) =− (δ1κ + δ2κ + δ3κ) ρ̈i

− (δ2κδ1κ + δ3κδ1κ + δ3κδ2κ) ρ̇i

− δ3κδ2κδ1κ (ρi − κmin ) .

We will omit arguments ρi, ρ̇i,and ρ̈i when it is clear that
we are referring to Pi (ρi, ρ̇i, ρ̈i), Qi (ρi, ρ̇i, ρ̈i), and Wi (ρi).
There are three cases according to the value of Qi.

Case I, if Qi > 0, µiκ can be solved from (36) as

Pi
Qi
≥ µiκ ≥Wi.

It is considered the term:

Pi −QiWi

=−Qi (aκρ̈i + bκρ̇i) + γκ

(
ε2κ −

1

4
Q2
i

)

+Qi

 (δ1κ + δ2κ + δ3κ) ρ̈i

+ (δ2κδ1κ + δ3κδ1κ + δ3κδ2κ) ρ̇i

+ δ3κδ2κδ1κ (ρi − κmin )


=Qi

 (δ1κ + δ2κ + δ3κ − aκ − 0.25γκ) ρ̈i

+ (δ2κδ1κ + δ3κδ1κ + δ3κδ2κ − bκ − 0.25γκaκ) ρ̇i

+ (δ3κδ2κδ1κ − 0.25γκbκ) (ρi − κmin )


+ γκε

2
κ.

Combining (14), it has

Pi −QiWi =
1

2
Q2
i + γκε

2
κ > 0,

which means (36) is not contradictory for µiκ. Feasible control
µiκ exists.

Case II, if Qi < 0, (36) is rewritten as

µiκ ≥ max

{
Wi,

Pi
Qi

}
.

Case III, if Qi = 0, (36) is rewritten as

µiκ ≥Wi.

Hence, for any Qi ∈ Rn, the feasible control µiκ in (13)
for the dynamics (4) always exist as long as the condition (14)
is satisfied.

C. Proof of Theorem 3

The control goal is to enforce formation scaling parameters
to reach the average consensus of the local scaling policies,
such that

lim
t→∞

∣∣∣∣∣∣κi − 1

n

n∑
j=1

ρj

∣∣∣∣∣∣→ 0, lim
t→∞

∣∣∣∣∣∣κ̇i − 1

n

n∑
j=1

ρ̇j

∣∣∣∣∣∣→ 0.

The consensus error is defined as

κ̃i = κi −
1

n

n∑
j=1

κj ,

˙̃κi = κ̇i −
1

n

n∑
j=1

κ̇j .

They can be rewritten into the matrix form, such that

κ̃ = Mκ,

˙̃κ = Mκ̇,
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where

M = In −
1

n
1Tn1n,

κ =
[
κ1 · · · κn

]T
,

and it can be verified that

MH = H,

ML = LM = L.

Then, we have

¨̃κ =Mκ̈

=Mρ̈− (α ˙̃κ + βκ̃) + M(aκρ̇ + bκρ)

− ϕκHsgn(HT ˙̃κ)− πκHsgn(HTκ̃).

We choose the following Lyapunov function:

Vκ =
1

2

[
κ̃
˙̃κ

]T([
α+ β 1

1 1

])[
κ̃
˙̃κ

]
+ πκ

n∑
i=1

∑
j∈N i

∫ κ̃i−κ̃j

0

sgn (s)ds.

According to aκ > 1, bκ > 0, it is known Vκ > 0. The
derivative of Vκ is

V̇κ = (aκ + bκ) κ̃T ˙̃κ + ˙̃κT ˙̃κ +
(
κ̃T + ˙̃κT

)
¨̃κ

+ πκ

n∑
i=1

∑
j∈N i

(
˙̃κi − ˙̃κj

)
sgn (κ̃i − κ̃j)

= (aκ + bκ) κ̃T ˙̃κ + ˙̃κT ˙̃κ−
(
κ̃T + ˙̃κT

)(
aκ ˙̃κ + bκκ̃

)
+
(
κ̃T + ˙̃κT

)
M(ρ̈ + aκρ̇ + bκρ)

− ϕκ
(
κ̃T + ˙̃κT

)
Hsgn(HT ˙̃κ)

− πκ
(
κ̃T + ˙̃κT

)
Hsgn(HTκ̃) + πκ ˙̃κTHsgn(HTκ̃)

=− (aκ − 1) ˙̃κT ˙̃κ− bκκ̃Tκ̃ +
(
κ̃T + ˙̃κT

)
Mχ

− ϕκκ̃THsgn(HT ˙̃κ)− ϕκ ˙̃κTHsgn(HT ˙̃κ)

− πκκ̃THsgn(HTκ̃)

where χi = ρ̈i + aκρ̇i + bκρi, and

χ =
[
χ1 · · · χn

]T
.

(13) can constraint the local scaling policies satisfy (8).
Hence, we know that

|ρ̈i + aκρ̇i + bκ (ρi − κmin)| ≤ εκ,

|χi − χj | ≤ 2εκ.

Then, it is analyzed that

ρ̇TMχ = ρ̇TM2χ

≤ ||Mχ||1||Mχ||1

≤ max
i,j
{|χi − χj |}

n∑
i=1

n∑
j=1,j 6=i

∣∣ ˙̃κi − ˙̃κj
∣∣

≤ max
i,j
{|χi − χj |}nmax

i


n∑

j=1,j 6=i

∣∣ ˙̃κi − ˙̃κj
∣∣

≤ n (n− 1)

2
max
i,j
{|χi − χj |}

n∑
i=1

n∑
j∈N i

∣∣ ˙̃κi − ˙̃κj
∣∣

≤ n (n− 1) εκ

n∑
i=1

n∑
j∈N i

∣∣ ˙̃κi − ˙̃κj
∣∣.

Similarly, it has

ρTMχ ≤ n (n− 1) εκ

n∑
i=1

n∑
j∈N i

|κ̃i − κ̃j |.

We also know that

ϕκκ̃
THsgn(HT ˙̃κ) ≤ ϕκ

n∑
i=1

n∑
j∈N i

|κ̃i − κ̃j |.

Therefore, it follows that

V̇κ ≤− (aκ − 1) ˙̃κT ˙̃κ− bκκ̃Tκ̃

+ n (n− 1) εκ

n∑
i=1

n∑
j∈N i

∣∣ ˙̃κi − ˙̃κj
∣∣

+ n (n− 1) εκ

n∑
i=1

n∑
j∈N i

|κ̃i − κ̃j | − ϕκ
n∑
i=1

∑
j∈N i

∣∣ ˙̃κi − ˙̃κj
∣∣

+ ϕκ

n∑
i=1

∑
j∈N i

|κ̃i − κ̃j | − πκ
n∑
i=1

∑
j∈N i

|κ̃i − κ̃j |

≤ − (aκ − 1) ˙̃κT ˙̃κ− bκκ̃Tκ̃

− [ϕκ − n (n− 1) εκ]

n∑
i=1

n∑
j∈N i

∣∣ ˙̃κi − ˙̃κj
∣∣

− [πκ − ϕκ − n (n− 1) εκ]

n∑
i=1

n∑
j∈N i

|κ̃i − κ̃j |

≤ −
[
κ̃
˙̃κ

]T([
bκ 0
0 aκ − 1

])[
κ̃
˙̃κ

]
− [πκ − ϕκ − n (n− 1) εκ]

n∑
i=1

∑
j∈N i

∫ κ̃i−κ̃j

0

sgn (s)ds

≤− C
′

κVκ,

where

C
′

κ = min


πκ − ϕκ − n (n− 1) εκ

πκ
,

2 min {aκ − 1, bκ}

λmax

([
aκ + bκ 1

1 1

])
 .
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This implies
[
κ̃ ˙̃κ

]
→ 0. The formation scaling param-

eters reach an agreement. Then, we sum up the closed-loop
dynamics of (15) and (16), yielding

n∑
i=1

κ̈i =

n∑
i=1

ρ̈i − aκ
n∑
i=1

(κ̇i − ρ̇i)− βκ
n∑
i=1

(κi − ρi).

It apparently follows that
∑n
i=1 κi →

∑n
i=1 ρi and∑n

i=1 κ̇i →
∑n
i=1 ρ̇i, t → ∞. In view of

[
κ̃ ˙̃κ

]
→ 0, we

know κi →
1

n

∑n
j=1 ρj and κ̇i →

1

n

∑n
j=1 ρj , t→∞. Thus,

the control objective is proved.

REFERENCES

[1] X. Zhang, F. Zhang, P. Huang et al., “Self-Triggered Based Coordinate
Control with Low Communication for Tethered Multi-UAV Collabora-
tive Transportation,” IEEE Robot. Autom. Lett., vol. 6, no. 2, pp. 1559-
1566, 2021.

[2] K. Harikumar, J. Senthilnath and S. Sundaram, “Multi-UAV Oxyrrhis
Marina-Inspired Search and Dynamic Formation Control for Forest
Firefighting,” IEEE Trans. Autom. Sci. Eng., vol. 16, no. 2, pp. 863-
873, 2019.

[3] A. Wallar, E. Plaku and D.A. Sofge, “Reactive Motion Planning for
Unmanned Aerial Surveillance of Risk-Sensitive Areas,” IEEE Trans.
Autom. Sci. Eng., vol. 12, no. 3, pp. 969-980, 2015.

[4] A. Guillet, R. Lenain, B. Thuilot, and V. Rousseau, “Formation Control
of Agricultural Mobile Robots: A Bidirectional Weighted Constraints
Approach,” J. F. Robot., vol. 34, no. 7, pp. 1260-1274, 2017.

[5] E. Gill, P. Sundaramoorthy, J. Bouwmeester, B. Zandbergen, and R.
Reinhard, “Formation flying within a constellation of nano-satellites:
The QB50 mission,” Acta Astronaut., vol. 82, no. 1, pp. 110-117, 2013.

[6] Y. Zhao, F. Zhang, P. Huang, and X. Liu, “Impulsive Super-Twisting
Sliding Mode Control for Space Debris Capturing via Tethered Space
Net Robot,” IEEE Trans. Ind. Electron., vol. 67, no. 8, pp. 6874-6882,
2020.

[7] Y. Wang, M. Shan, Y. Yue, and D. Wang, “Vision-based flexible leader-
follower formation tracking of multiple nonholonomic mobile robots in
unknown obstacle environments,” IEEE Trans. Control Syst. Technol.,
vol. 28, no. 3, pp. 1025-1033, 2020.

[8] X. Liu, S. S. Ge, and C. H. Goh, “Vision-Based Leader-Follower
Formation Control of Multiagents with Visibility Constraints,” IEEE
Trans. Control Syst. Technol., vol. 27, no. 3, pp. 1326-1333, 2019.

[9] F. Schiano and P. R. Giordano, “Bearing rigidity maintenance for
formations of quadrotor UAVs,” in Proc. IEEE Int. Conf. Robot. Autom.,
pp. 1467-1474, 2017.

[10] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and coopera-
tion in networked multi-agent systems,” Proc. IEEE, vol. 95, no. 1, pp.
215-233, 2007.

[11] W. Ren, “Multi-vehicle consensus with a time-varying reference state,”
Syst. Control Lett., vol. 56, no. 7-8, pp. 474-483, 2007.

[12] Z. Miao, Y. H. Liu, Y. Wang, G. Yi, and R. Fierro, “Distributed Esti-
mation and Control for Leader-Following Formations of Nonholonomic
Mobile Robots,” IEEE Trans. Autom. Sci. Eng., vol. 15, no. 4, pp. 1946-
1954, 2018.

[13] S. P. Hou, C. C. Cheah, and J. J. E. Slotine, “Dynamic region following
formation control for a swarm of robots,” in Proc. Int. Conf. Robot.
Autom., 2009, pp. 1929-1934.

[14] J. Fu, Y. Lv, and W. Yu, “Robust adaptive time-varying region tracking
control of multi-robot systems,” Sci. China Inf. Sci., vol. 66, no. 5, pp.
2022-2023, 2023.

[15] S. Coogan and M. Arcak, “Scaling the size of a formation using relative
position feedback,” Automatica, vol. 48, no. 10, pp. 2677-2685, 2012.

[16] Z. Han, G. Hu, L. Xie, and Z. Lin, “Estimation based formation control
with size scaling for leader-follower networks,” in Proc. Int. Conf.
Control. Autom. Robot. Vision, 2018, pp. 1022-1027.

[17] Z. Han, L. Wang, Z. Lin, and R. Zheng, “Formation Control with
Size Scaling Via a Complex Laplacian-Based Approach,” IEEE Trans.
Cybern., vol. 46, no. 10, pp. 2348-2359, 2016.

[18] H. Garcia de Marina, “Distributed formation maneuver control by
manipulating the complex Laplacian,” Automatica, vol. 132, p. 109813,
Oct. 2021.

[19] Q. Yang, Z. Sun, M. Cao, H. Fang, and J. Chen, “Construction of uni-
versally rigid tensegrity frameworks and their applications in formation
scaling control,” in Proc. Chin. Control Conf., 2017, pp. 8177-8182.

[20] Q. Yang, M. Cao, Z. Sun, H. Fang, and J. Chen, “Formation scaling
control using the stress matrix,” in Proc. Annu. Conf. Decis. Control,
2018, pp. 3449-3454.

[21] Q. Yang, H. Fang, M. Cao, and J. Chen, “Planar Affine Formation
Stabilization via Parameter Estimations,” IEEE Trans. Cybern., vol. 52,
no. 6, pp. 5322-5332, Jun. 2022.

[22] Q. Yang, Z. Sun, M. Cao, H. Fang, and J. Chen, “Stress-matrix-based
formation scaling control,” Automatica, vol. 101, pp. 120-127, 2019.

[23] J. Wang, X. Ding, C. Wang, Z. Zuo, and Z. Ding, “Affine Formation Con-
trol of General Linear Multi-Agent Systems with Delays,” Unmanned
Syst., vol. 11, no. 02, pp. 123-132, Apr. 2023.

[24] O. Onuoha, H. Tnunay, Z. Li, and Z. Ding, “Affine Formation Al-
gorithms and Implementation Based on Triple-Integrator Dynamics,”
Unmanned Syst., vol. 7, no. 1, pp. 33-45, Jan. 2019.

[25] S. Zhao and D. Zelazo, “Translational and scaling formation maneuver
control via a bearing-based approach,” IEEE Trans. Control Netw. Syst.,
vol. 4, no. 3, pp. 429-438, 2017.

[26] Y. Lu, C. Wen, T. Shen, and W. Zhang, “Bearing-Based Adaptive
Neural Formation Scaling Control for Autonomous Surface Vehicles
with Uncertainties and Input Saturation,” IEEE Trans. Neural Networks
Learn. Syst., vol. 32, no. 10, pp. 4653-4664, 2021.

[27] I. Buckley and M. Egerstedt, “Infinitesimal Shape-Similarity for Char-
acterization and Control of Bearing-Only Multirobot Formations,” IEEE
Trans. Robot., vol. 37, no. 6, pp. 1921-1935, 2021.

[28] R. A. Freeman, P. Yang, and K. M. Lynch, “Stability and convergence
properties of dynamic average consensus estimators,” in Proc. IEEE
Conf. Decis. Control, Dec. 2006, pp. 398-403.

[29] F. Chen, W. Ren, W. Lan, and G. Chen, “Distributed average tracking
for reference signals with bounded accelerations,” IEEE Trans. Automat.
Contr., vol. 60, no. 3, pp. 863-869, 2015.

[30] S. Ghapani, S. Rahili, and W. Ren, “Distributed Average Tracking of
Physical Second-Order Agents with Heterogeneous Unknown Nonlinear
Dynamics Without Constraint on Input Signals,” IEEE Trans. Automat.
Contr., vol. 64, no. 3, pp. 1178-1184, 2019.

[31] M. Saim, S. Ghapani, W. Ren, K. Munawar, and U. M. Al-Saggaf,
“Distributed average tracking in multi-agent coordination: Extensions
and experiments,” IEEE Syst. J., vol. 12, no. 3, pp. 2428-2436, 2018.

[32] F. Chen and W. Ren, “A Connection between Dynamic Region-
Following Formation Control and Distributed Average Tracking,” IEEE
Trans. Cybern., vol. 48, no. 6, pp. 1760-1772, 2018.

[33] F. Chen, Y. Cao, and W. Ren, “Distributed average tracking of multiple
time-varying reference signals with bounded derivatives,” IEEE Trans.
Automat. Contr., vol. 57, no. 12, pp. 3169-3174, 2012.

[34] C. Yu, H. Wang, and W. Yu, “Distributed Average Tracking Problem
Under Directed Networks: A Distributed Estimator-Based Design,” IEEE
Trans. Control Netw. Syst., vol. 9, no. 2, pp. 930-942, Jun. 2022.

[35] H. Hong, G. Wen, X. Yu, and W. Yu, “Robust Distributed Average
Tracking for Disturbed Second-Order Multiagent Systems,” IEEE Trans.
Syst. Man, Cybern. Syst., vol. 52, no. 5, pp. 3187-3199, May 2022.

[36] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control Barrier
Function Based Quadratic Programs for Safety Critical Systems,” IEEE
Trans. Automat. Contr., vol. 62, no. 8, pp. 3861-3876, 2017.

[37] W. Xiao and C. Belta, “High-Order Control Barrier Functions,” IEEE
Trans. Automat. Contr., vol. 67, no. 7, pp. 3655-3662, Jul. 2022.

[38] W. Xiao and C. Belta, “Control Barrier Functions for Systems with
High Relative Degree,in Proc. IEEE Conf. Decis. Control, Dec. 2019,
pp. 474-479.

[39] J. Breeden and D. Panagou, “High Relative Degree Control Barrier
Functions Under Input Constraints,” in Proc. IEEE Conf. Decis. Control,
Dec. 2021, pp. 6119-6124.

[40] X. Xu, “Control sharing barrier functions with application to constrained
control,” in Proc. IEEE Conf. Decis. Control, Dec. 2016, pp. 4880-4885.

[41] X. Xu, “Constrained control of inputoutput linearizable systems using
control sharing barrier functions,” Automatica, vol. 87, pp. 195-201,
2018.

[42] N. Biggs, Algebraic Graph Theory, Cambridge Tracks in Mathematics.
Cambridge, U.K.: Cambridge Univ. Press, 1974.

[43] H. N. Nguyen, S. Park, J. Park, and D. Lee, “A Novel Robotic
Platform for Aerial Manipulation Using Quadrotors as Rotating Thrust
Generators,” IEEE Trans. Robot., vol. 34, no. 2, pp. 353-369, 2018.

[44] Y. Tian et al., “Search and rescue under the forest canopy using multiple
UAVs,” Int. J. Rob. Res., vol. 39, no. 1011, pp. 1201-1221, 2020.



15

Xiaozhen Zhang received M.S. degree in navi-
gation, guidance and control, from Northwestern
Polytechnical University, Xian, China, in 2021. He
is currently working toward the Ph.D. degree in con-
trol engineering at Beijing Institute of Technology,
Beijing, China.

His research interests include robotics, formation
planning, formation control and multi-agent systems.

Qingkai Yang (Member, IEEE) received the first
Ph.D. degree in control science and engineering
from the Beijing Institute of Technology, Beijing,
China, in 2018, and the second Ph.D. degree in
system control from the University of Groningen,
Groningen, The Netherlands, in 2018.

He is currently an Associate Professor with the
School of Automation, Beijing Institute of Technol-
ogy. His research interest is in formation control of
multi-agent systems and autonomous agents.

Jingshuo Lyu received the B.S. degree in automa-
tion from the Beijing Institute of Technology, Bei-
jing, China, in 2021, and is currently pursuing the
M.S. degree in control science and engineering from
the Beijing Institute of Technology, Beijing, China.

His research interests include tensegrity robotics,
motion planning and air-ground amphibious robot.

Xinyue Zhao received the B.S. degree in automation
from the Shenyang Ligong University, Shenyang,
China, in 2019, and is currently pursuing the Ph.D.
degree in control science and engineering from the
Beijing Institute of Technology, Beijing, China.

His research interests include safe control of
multi-agent systems, distributed optimization, for-
mation control, and control applications.

Hao Fang (Member, IEEE) received the B.S. degree
from the Xian University of Technology, Shaanxi,
China, in 1995, and the M.S. and Ph.D. degrees from
the Xian Jiaotong University, Shaanxi, in 1998 and
2002, respectively.

Since 2011, he has been a Professor with the
Beijing Institute of Technology, Beijing, China. He
held two postdoctoral appointments with the IN-
RIA/France Research Group of COPRIN and the
LASMEA (UNR6602 CNRS/Blaise Pascal Univer-
sity, Clermont-Ferrand, France).

His research interests include all-terrain mobile robots, robotic control, and
multiagent systems.


