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Abstract— This article investigates the problem of planar affine
formation maneuver control with a matrix-valued formation
shape variation parameter. The matrix representation renders
full degree of freedom (DOF) motion associated with linear
mappings in the context of affine transformation. Unlike the
typical leader–follower setup, where all the leaders know the
prescribed formation information, only a portion of leaders are
informed of the matrix parameter in this article. To achieve
affine formation stabilization, two types of distributed estimators
are developed for the remaining leaders to infer constant and
dynamic matrix parameters, utilizing only local displacement
measurements. Then, we establish a joint estimation and coop-
erative control framework, generating corresponding formation
shape changes in consistent with the matrix parameter. The
system stability and precise estimation convergence are verified
via both rigorous theoretical analyses and simulations with large-
scale swarms. Finally, experiments conducted on the Crazyflie
robots also validate the effectiveness and practicality of the
proposed control approach.

Index Terms— Affine formation, formation control, multiagent
systems, parameter estimation.

I. INTRODUCTION

FORMATION control has been attracting extended atten-
tions as it provides us with a straightforward framework

to reveal and develop the cooperative mechanisms of multiple
autonomous agents [1]. The realization of diverse formation
patterns can be established based on a range of theories,
such as consensus control [2], graph rigidity [3], [4], optimal
control [5], and differential game [6], to name a few. From
the perspective of practical applications in various fields, it is
recognized both in industry and academia that the feasibility
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and flexibility are essential for the formation system to adapt
to the changes and constraints in the ambient working space
(e.g., unforeseen disturbances and cyberattacks). To this end,
there has been an increasing focus on affine formation control
in recent years due to its superiorities in scalability and high
degree of freedom (DOF) with respect to collective motions.

Affine formation control is closely related to affine trans-
formation/image, under which the overall formation shape
changes according to the embedded transformation matrix.
In [7], the necessary and sufficient conditions for the realizabil-
ity and stabilizability of an affine formation over undirected
and directed graphs are given, laying the graphical foun-
dation for the later research on controller design. In [8],
the concept of affine localizability is put forward, bridging
the gap between the graphical conditions and affine for-
mation maneuver control. Within the proposed hierarchical
leader–follower structure, it is only required to control the
followers based on the intrinsic stresses. An extension to
high-order systems is discussed in [9], where control laws
for followers are provided implementing trajectory tracking
to leaders. Following a similar control scheme, fully dis-
tributed control laws are designed for the general linear-time
invariant system with uncertainties [10]. It is proved that the
leader–follower structure also applies to high-order systems
by employing the back-stepping method [11]. To solve the
problem of global stabilization of rigid formations, a two-
step method, first converging to the affine space and then
stabilizing at one specific formation, is proposed using the
sliding mode control and descent gradient control [12]. Besides
the feasibility analysis, in [13], it is shown that the formation
will converge to a steady-state distorted shape when the
sensors have different scale factors and misalignments but
with almost perfect sensing. When taking the obstacles into
consideration, a feasible path using the A∗ search method is
first constructed for leaders, based on which the continuum
deformation of the whole group is then determined [14] to
ensure collision-free. For improving the system performance,
the historical velocity command is applied in affine formation
controller [15], attaining the explicit relationship between the
delay parameter and ultimate bounds of tracking errors.

In task-oriented formation control applications, it is noticed
that the real working conditions are far from ideal. For
example, agents might suffer from communication constraints
for security reasons [16]. In these circumstances, parameter
estimation via limited available measurements is essential for
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the accomplishment of the prescribed control task. In [17],
the projection operator is used to infer the scaling parameter
under the so-called monitoring graph. Relying on the relative
position measurements with respect to neighbors, Lee and
Ahn [18] design a strategy to estimate the global orientation,
with which the formation can be stabilized even when the local
frames are misaligned. For affine formation maneuver control
in IRd , it is generally required at least d + 1 agents having
the knowledge of formation transformation parameter [8].
We call it minimal realization in the sense of the number of
actively controlled agents. In the case of insufficient informed
agents, estimation-based control strategies are proposed in [19]
and [20]. Under the mildest assumption that only one agent
knows the desired formation scaling parameter, Yang et al.
[19] develop the scheme of integrated estimator controller
for other d agents, and other agents follow the nominal
stress-matrix-based interaction rules. A step further, the mixed
rotation-scaling transformations are considered in [20], where
the sufficient conditions for the stability of the integrated
control framework are given based on cyclic small-gain
theorems.

In this article, we consider planar affine formation maneuver
control, aiming to enhance the flexibility of shape morphing
through the utilization of matrix formation parameters. How-
ever, one challenge arises from the insufficient number of
informed leaders, which fails to meet the minimum require-
ment for successful realization. Moreover, unaware agents can
only rely on local sensing to coordinate their actions, inten-
sifying the difficulty in achieving global collective behavior.
As the displacement changes are affected by the combined
influence of multiple components, it becomes unfeasible to
separate and identify the specific influence of each individual
parameter from the unified measurement.

Specifically, two scenarios will be discussed, i.e., the for-
mation maneuver is guided by constant and time-varying
matrices, respectively. Correspondingly, we propose two types
of estimators by invoking the descent gradient method and
the internal model-like scheme. Concurrently, the agents are
actuated based on the current state of the estimators and the
underlying stress matrix. The idea behind the joint estimation
and control is that the unaware agents can finally perceive the
real values of the unknown matrix in a heuristic way through
the persistent correction from informed agents on their local
displacements.

In summary, this article presents the following primary
contributions and advantages.

1) The proposed formation maneuver control method
enables more versatile formation patterns than [4],
[13], [17], and [21], where limited types of forma-
tion transformations are allowed, such as scaling and
rotation. In spatially constrained environments, such as
obstacle-dense field scenarios, it is generally preferable
to variously alter the formations of the multirobot system
to adapt to the environmental changes. Toward this
end, the proposed method can achieve full DOF affine
formation shape transformation. From this perspective,
the aforementioned results [4], [13], [17], [21] can be
seen as special cases of this article.

2) Instead of estimating a single parameter [17], [19],
[21], this article addresses a more complex estimation
problem. For the case of single-parameter estimation,
the changes in relative positions exhibit the unique
mapping relationship with the specific parameter studied
in [17], [19], and [21], while elements of the matrix
parameter in this article are intrinsically coupled in terms
of the measured displacement changes. Consequently,
it is challenging to identify the relationship between
displacement measurements and unknown parameters in
a componentwise manner.

3) The proposed estimation-based affine formation con-
trol framework requires less informed leaders than [8]
and [11], and can effectively handle both constant and
time-varying matrix parameters, as opposed to only
considering constant parameters [19], [20].

4) The proposed joint estimation and control framework
resolve the excitation conflict in the sense that the pre-
cise estimation requires rich displacement changes [22],
[23], while formation control drives agents to relatively
stable states.

5) To the best of authors’ knowledge, it is the first time to
verify the effectiveness of the affine formation control
method in simulations with large-scale swarms. The
results show remarkable superiority in maneuvering the
overall formation with only two informed leaders.

This article is organized as follows. Section II provides an
introduction to the background of graph theory and affine
formation maneuver control. In Section III, a comprehen-
sive solution for formation maneuver control is presented,
specifically focusing on scenarios where the matrix parameter
is constant. Section IV presents an extensive study on the
combined estimation and control scheme tailored to address
the challenges posed by time-varying matrix parameters.
To demonstrate the effectiveness of the proposed control
schemes, Section V showcases their application through sim-
ulation and practical implementation on a team of Crazyflie
robots. Lastly, concluding remarks are provided in Section VI.

II. PRELIMINARIES

A. Notations

Given two matrices A ∈ IRm×n and B ∈ IRp×q , there
holds A ⊗ B ∈ IRmp×nq , where the operator ⊗ denotes the
Kronecker product. 1n ∈ IRn represents the column vector
with all 1s. Similarly, we define 0n = [0, . . . , 0]

T. For a
given vector x , we denote by ∥x∥ as its Euclidean norm.
diag (x1, x2, . . .) denotes a diagonal matrix. We use λmax(X)

[respectively, λmin(X)] to denote the largest (respectively,
smallest) eigenvalue of a real symmetric matrix X in any
dimension. Given two real symmetric matrices X and Y with
the same dimension, X ≻ Y means X − Y is positive definite.
On the contrary, X ≺ Y means X − Y is negative definite.

B. Graph Theory

The team agents and their interaction relationships can
be mapped into the graph G(V, E). The node set V =

{1, 2, . . . , n} represents all the agents, and there would be an
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edge (i, j) in the set E if agents i and j have interactions
with each other. In this article, the graph is assumed to be
simple and undirected, i.e., the existence of (i, j) implies
the mutual neighboring relationship between agents i and j .
By simple, we mean there is no self-loop and multiple edges
in the graph. For each agent i , its neighbor set is defined
as Ni = { j |(i, j) ∈ E}. The neighboring relationship can
also be mathematically expressed by the adjacency matrix
A ∈ IRn×n , whose (i, j)th position is set to be 1 only when
agents i and j are neighbors. Note that the adjacency matrix
is a binary matrix that only represents the existence of the
connection between pairwise agents. The Laplacian matrix
L = [li j ] ∈ IRn×n is defined by

li j =


− [A]i j , i ̸= j∑
k∈Ni

[A]ik , i = j. (1)

Now we will introduce the concept of universally rigid. Two
related concepts of rigidity are first given for illustration [7].
Consider two frameworks denoted as (G, p) and (G, q),
where G represents the graph with two configurations p =

[p1, . . . , pn]
T and q = [q1, . . . , qn]

T. These two frameworks
are deemed equivalent if the distances between connected
nodes are the same, expressed as

∥pi − p j∥ = ∥qi − q j∥ ∀ (i, j) ∈ E .

More rigorously, they are referred to as congruent if the
distances between every pair of nodes are identical, given by

∥pi − p j∥ = ∥qi − q j∥ ∀i, j ∈ V.

A framework (G, q) in IRd is characterized as globally rigid
if, for any configuration p in IRd , the two frameworks (G, q)

and (G, p) are congruent as long as they are equivalent.
A framework in IRd is called universally rigid if it is globally

rigid in any IRd̄ with d̄ ≥ d .

C. Affine Formation Maneuver Control

The affine formation control approach utilizes the
leader–follower control structure, where Vl and V f represent
the leader and follower sets, respectively. In the context of
affine formation control, each edge (i, j) is assigned a weight
ωi j ∈ IR, called stress, which can be either positive or negative.
The stress matrix � ∈ IRn×n is defined by

[�]i j =


∑
j∈Ni

ωi j , i = j

−ωi j , i ̸= j.
(2)

Lemma 1 [7], [24]: If the framework (G, q) is universally
rigid in IRd , then the stress matrix � is positive semi-definite
with rank(�) = n − d − 1, and it holds∑

j∈Ni

ωi j
(
qi − q j

)
= 0. (3)

It is remarked that such a stress matrix can be computed
by singular value decomposition (SVD) [8, Sec. VII.A],
[25, Algorithm 1] or topological optimization [26].

Prior to giving the problem, we first introduce the basic
concepts of affine transformation. Given a configuration q∗

∈

IRnd , the affine transformation of q∗ is defined by

T
(
q∗

)
=

{
q =

[
. . . , qT

i , . . .
]T

: qi = Aq∗

i + b

A ∈ IRd×d , b ∈ IRd , i ∈ V
}

. (4)

where A is called the linear transformation matrix, b is the
translational vector, and q denotes the target formation. The
objective of the affine formation maneuver control is to shift
agents to reach the target formation.

The following Lemma introduces the unique mapping rela-
tionship between leaders and followers.

Lemma 2 [8]: For a given framework (G, q∗) in IRd ,
if {q∗

i }i∈Vl affinely span IRd , q f can be uniquely determined
by ql , for any [qT

l , pT
f ]

T
∈ T (q∗), where ql and q f are the

target formations of leaders and followers, respectively.

D. Problem Statement

This article considers the planar leader–follower formation
problem with a group of n agents. Each agent is modeled by
the single-integrator dynamics

q̇i = ui (5)

where qi ∈ IR2 represents the planar Cartesian coordinate,
and ui ∈ IR2 is the velocity commands to agent i . That
means the position of agent i can be directly controlled via ui .
To provide a formal description of the nominal configuration,
we introduce the following assumption.

Assumption 1: The nominal framework (G, q∗) is univer-
sally rigid, and {q∗

i }i∈Vl affinely span IR2.
In view of Lemma 2, it is noted that Assumption 1 is a

sufficient condition for determining followers’ formation by
leaders. In Assumption 1, at least three leaders are required
in order to meet {q∗

i }i∈Vl affinely span IR2. Consequently, the
leader set is chosen as Vl = {1, 2, 3} with the corresponding
subgraph Gl . Correspondingly, the sets N l

i , i = 1, 2, 3 denote
the neighboring relationship in Gl . Other follower agents are
grouped in the set V f , i.e., V f = {4, . . . , n}.

Generally, to activate the cascade leader–follower control in
affine formation control [8], [27], all leaders are informed of
the desired formation, e.g., the linear transformation matrix
A. However, this article considered a milder condition that
only two of the leaders (agents 1 and 2) know A, as shown in
Fig. 1. The rest of the agents are only allowed to use their local
displacement measurements to steer themselves to form the
desired formation determined by the nominal configuration q∗

and the matrix A. The control objective can be mathematically
formulated as

lim
t→∞

ri j (t) = A (t) · r∗

i j ∀i, j ∈ V. (6)

where ri j = qi − q j and r∗

i j = q∗

i − q∗

j . We will design
estimators for agent 3 to acquire the information of A(t) in
both cases of constant and time-varying matrices. Accordingly,
the control strategies will also be presented, respectively.

Remark 1: Given a nominal configuration q∗, the realiza-
tion of the control objective (6) implies that the formation
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Fig. 1. Schematic of the configuration of formation parameter A.

shape can be regulated by the linear transformation matrix
A without the consideration of the translational motion. This
coincides with the fact that only relative position measure-
ments are allowed to be used, and thus, the absolute location
of the whole formation cannot be determined. It is also worth
noting that q∗ is provided as the virtual reference to assist
formation variations, which does not serve as the desired
absolute positions.

Remark 2: The estimation-based methods in this article can
also be extended to d-dimensional space, where d + 1 is the
minimal number of leaders that affinely span IRd required by
Lemma 2. Consequently, in a d-dimensional space, d agents
know the affine transformation matrix A, and one leader is
equipped with estimators. As a result, more relative displace-
ment measurements among leaders should be conducted.

III. AFFINE FORMATION MANEUVER CONTROL
UNDER CONSTANT MATRIX A

Before moving on, we first introduce two definitions to
facilitate the following analyses.

Definition 1: Let C be an n × m matrix. The vectoriza-
tion of C , denoted by vec(C), is the nm-dimensional vector
obtained by concatenating the columns of the matrix C ,
defined as

vec (C) =
[
cT
·1, cT

·2, . . . , cT
·m

]T

where c·i ∈ IRn represents the i th column of the matrix C .
Definition 2: Given any vector x = [x1, . . . , xd ]

T
∈ IRd ,

the operation, denoted by Mat(x), performed over the vector
x results in a d × d2 matrix defined by

Mat (x) = xT
⊗ Id .

With these two definitions, one has the following conclu-
sion.

Proposition 1: Given any matrix C ∈ IRd×d and vector νi ∈

IRd , i = 1, . . . , n, there holds

α1Cν1 + · · · + αnCνn =
(
1T

n ⊗ Id
) α1Mat (ν1)

...

αnMat (νn)

 vec (C)

where αi , i = 1, . . . , n, is an arbitrary constant.

Proof: From Definitions 1 and 2 and basic multiplication
principles of matrices, we immediately have

Cx = Mat (x) vec (C) ∀x ∈ IRd .

Consequently, one has

α1Cν1 + · · · + αnCνn

= α1Mat (ν1) vec (C) + · · · + αnMat (νn) vec (C)

= (α1Mat (ν1) + · · · + αnMat (νn)) vec (C)

=
(
1T

n ⊗ Id
) Mat (ν1)

...

Mat (νn)

 vec (C)

where the last equality holds by directly taking the multipli-
cation operation of the first two terms in the last line. This
completes the proof.

The distributed control laws are given by

ui = −k3
∑
j∈Ni

ωi jri j − k1
∑
j∈N l

i

(
ri j − Ār∗

i j

)
, i ∈ Vl (7a)

ui = −k3
∑
j∈Ni

ωi jri j , i ∈ V f (7b)

where

Ā =

{
A, i = 1, 2
Â, i = 3

with Â the estimation of the linear transformation matrix A ∈

IR2×2. N l
i and Ni denote the neighbor sets in graphs Gl and

G, respectively. k3 is a positive gain. The positive gain k1 will
be designed later. Equivalently, the control law (7a) can be
rewritten as

q̇i = −k3
∑
j∈Ni

ωi jri j − k1
∑
j∈N l

i

[
ri j − Mat

(
r∗

i j

)
vec

(
Ā
)]

.

For the sake of simplicity, we denote by a 1
= vec(A). The

updating law for the estimation â of agent 3 is given by

˙̂a = −k2
(
M∗

3
)T M∗

3 â + k2
(
M∗

3
)T r3 (8)

where M∗

3 = [Mat(r∗

31)
T, Mat(r∗

32)
T
]
T

∈ IR4×4, and r3
1
=

[rT
31, rT

32]
T

∈ IR4 for easy reading; k2 is a positive gain to
be designed.

Theorem 1: Under Assumption 1, for multiagent systems
with dynamics modeled by (5), the affine formation maneuver
motion governed by the linear transformation matrix A can
be realized exponentially using the proposed control algo-
rithms (7) in combination with the estimator (8), i.e., ri j (t) →

Ar∗

i j , ∀i, j , as t → ∞. In addition, the estimation â also
exponentially converges to its real value, i.e., â(t) → a,
as t → ∞.

Proof: Before moving on, we first define two auxiliary
functions

fi
(
ωi j , ri j

) 1
= −k3

∑
j∈Ni

ωi jri j

gi

(
ri j , r∗

i j , Ā
)

1
= −k1

∑
j∈N l

i

(
ri j − Ār∗

i j

)
.
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TABLE I
ERROR-RELATED VARIABLES

Throughout this article, for simplicity, we will omit the argu-
ments when there is no ambiguity. Then, the controller (7) can
be rewritten in the form of

q̇i =

{
fi + gi , i ∈ Vl

fi , i ∈ V f .
(9)

For clear presentation, the error-related variables are listed in
Table I.

We then decompose the stability analysis of the overall
closed-loop system into the following three steps:

1) the convergence of r̃21 under q̇i = gi , i ∈ Vl ;
2) the convergence of r̃31, r̃32, and ã under q̇i = gi , i ∈ Vl ;
3) the global convergence of the desired affine formation

using (9).
The first two steps aim to demonstrate the convergence of

the leaders toward their desired displacements. This conver-
gence is realized by the proposed subcontroller gi and its
associated estimator. Simultaneously, the subcontroller fi is
utilized to drive all agents to the affine image of q∗. Then, the
final step is to show that the configuration q is a translation
of q∗, indicating that they share the same formation shape.

For step 1), given the dynamics q̇i = gi , the derivative of
r̃21 is in the form

˙̃r21 = q̇2 − q̇1 = −3k1r̃21. (10)

Therefore, we know r̃21 converges to 02 exponentially fast
determined by the parameter k1, i.e., r12 is stabilized to r∗

12
exponentially.

For step 2), again under the situation where the leader
agents are governed by the partial input gi , the dynamics of
q3 satisfies

q̇3 = −k1
∑
j∈N l

3

(
r3 j − Mat

(
r∗

3 j

)
vec

(
Â
))

= −k1
∑
j∈N l

3

(
r3 j − Ar∗

3 j + Mat
(

r∗

3 j

)
a − Mat

(
r∗

3 j

)
â
)

= −k1 (r̃31 + r̃32) + k1
(
1T

2 ⊗ I2
)

M∗

3 ã

where the third equality is obtained from Proposition 1. Then,
it is easy to verify that

˙̃ql = −k1

 r̃13
r̃23

r̃31 + r̃32

 − k1

r̃12
r̃21
0

 + k1

 02
02(

1T
2 ⊗ I2

)
M∗

3 ã


(11)

where q̃l ∈ IR6 is the vector composed of elements qi − Aq∗

i ,
and ql = [qT

1 , qT
2 , qT

3 ]
T. Now, we introduce the matrix Hs as

Hs
1
=

[
−1 0 1
0 −1 1

]
whose transpose can be viewed as the incidence matrix
associated with edges (3, 1) and (3, 2) and their connecting
nodes. Akin to the definition of the graph Laplacian and the
edge Laplacian [28], the matrices Ls and Le

s are, respectively,
defined as

Ls = HT
s Hs, Le

s = Hs HT
s .

It can be easily checked that Le
s is positive definite. With these

definitions, the compact form of (11) is written as

˙̃ql = −k1 (Ls ⊗ I2) q̃l + k1
(
[1, −1, 0]T

⊗ I2
)

r̃21

+ k1 (diag (0, 0, 1) ⊗ I2)
(
131T

2 ⊗ I2
)

M∗

3 ã. (12)

In view of the updating law (8) of the parameter estimation
â, its error dynamics is given by

˙̃a = −k2
(
M∗

3
)T M∗

3 ã + k2
(
M∗

3
)T (

r3 − M∗

3 a
)

= −k2
(
M∗

3
)T M∗

3 ã + k2
(
M∗

3
)T r̃3 (13)

where we have inserted the term (M∗

3 )T M∗

3 â − (M∗

3 )T M∗

3 a to
explicitly show up ã, and the symbol r̃3 is defined as r̃3 =

[r̃T
31, r̃T

32]
T.

Now we consider the following sub-Lyapunov function
candidate:

V1 =
1
2

r̃T
3 (4 ⊗ I2) r̃3 +

1
2

ãTã

where the matrix 4 ∈ IR2×2 is positive definite.
After elaborate calculation (see Appendix A), the derivative

of V1 satisfies

V̇1 ≤ −

2 min
{
α, βλmin

((
M∗

3
)T M∗

3

)}
max {λmax (4) , 1}

V1 + γ ∥r̃21∥
2 . (14)

Note that the coefficient of V̇1 on the right side is negative.
Therefore, by taking account of the fact that the autonomous
part of (14) is exponentially stable, it can be concluded from
the input-to-state stability (ISS) theorem that V1 converges to
the origin when r̃21 goes to zero as t → ∞. Till now, the
proof of step 2) is finished.

Now, we move to step 3). Consider the affine transformation
T (q∗) = {q = (In ⊗ A)q∗

+ 1n ⊗ b|A ∈ IR2×2, b ∈ IR2
}

[the matrix form of (4)], the dimension of which is 6, i.e.,
dim(T (q∗)) = 6. Assume that the basis of T (q∗) is denoted
by {v1, . . . , v6}, which are exactly the eigenvectors associated
with zero eigenvalues of the matrix (� ⊗ I2). We define an
orthogonal matrix Q = [Q1, Q2] with Q1 = [v1, . . . , v6], and
the columns of Q2 ∈ IR2n×(2n−6) are eigenvectors associated
with nonzero eigenvalues of (�⊗ I2). Under this circumstance,
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one has

QT (� ⊗ I2) Q =



0

0. . .

0
λ7

0 . . .

λ2n


1
=

[
3a

3r

]
(15)

where 3a ∈ IR6×6, and 3r ∈ IR(2n−6)×(2n−6).
Consider the system dynamics q̇i = fi , i.e.,

q̇i = −k3
∑
j∈Ni

ωi j
(
qi − q j

)
.

The compact form is written as

q̇ = −k3 (� ⊗ I2) q.

To analyze the stability and its equilibria, we conduct the
coordinate transformation as

p =

[
pa
pr

]
= QTq.

The dynamics of p is given by

ṗ = QTq̇ = −k3 QT (� ⊗ I2) Qp.

In view of (15), one has{
ṗa = 0
ṗr = −k33r pr .

From the positive definiteness of the matrix 3r , we know
pr exponentially converges to zero. This implies QT

2 q → 0,
as t → ∞. Note that QT

2 Q1 = 0, then this means q converges
to the subspace spanned by the matrix Q1, which is exactly
the affine transformation of q∗. Therefore, we conclude that
q converges to T (q∗) exponentially fast.

Now we consider the overall dynamics (9). Based on
the previous analyses and the linear property of the two
dynamics q̇ = f (q) and q̇ = g(q), from the results in
[7, Theorem 7.2] and [29], we arrive at the conclusion that
all the agents converge to the desired formation determined by
the matrix A, i.e., ri j (t) → Ar∗

i j , ∀i, j , as t → ∞. In addition,
from the exponential convergence property, we also know
that the formation parameters can be precisely estimated, i.e.,
â(t) → a, as t → ∞.

IV. AFFINE FORMATION MANEUVER CONTROL UNDER
TIME-VARYING MATRIX A(t)

In this section, we consider the situation where the desired
formation is dynamically governed by the time-varying linear
transformation matrix A(t).

Without loss of generality, it is assumed that the signal
vec(A(t)) [i.e., a(t)] is generated by the following exosystem:

v̇ (t) = Sv (t) (16a)

a (t) = Cv (t) (16b)

where v(t) ∈ IRp, S ∈ IRp×p, and C ∈ IR4×p are the constant
matrices, and the system (16a) is marginally stable. We will
omit the argument t when it is clear that we are referring to
a(t), v(t), and A(t).

The focus of [8], [9], and [10] is to design control algorithms
only for followers to track the stabilized leaders. However,
in this article, we consider an integrated control framework not
only for followers but also for leaders. Partially motivated by
Zhao [8], where the strategy for tracking the dynamic leader
is discussed, the kernel of this section is to investigate the
control strategy for leaders, part of whom has no access to
the prescribed formation parameter. Hence, the main challenge
lies in controlling the unaware leader while inferring the
unknown parameter from the low-order relative displacements
with regard to the dynamic reference signals. The control
law to deal with the time-varying formation parameter has
the same merit as that in Section III, namely, the leaders
are responsible for managing the geometric formation shape
and the followers move in consistent with the inner coupling
strength ωi j .

The control laws for each agent are designed as

ui = −k1
∑
j∈N l

i

(
ri j − Ār∗

i j

)
+

1
3

˙̄A
∑
j∈N l

i

r∗

i j , i ∈ Vl (17a)

ui = −
1
di

∑
j∈Ni

ωi j
[(

qi − q j
)
− q̇ j

]
, i ∈ V f (17b)

where k1 is a positive gain. di =
∑

j∈Ni
ωi j is a nonzero

constant. Ā follows the same definition in (7), and ˙̄A denotes
its derivative, i.e.,

˙̄A =

{
Ȧ, i = 1, 2
˙̂A, i = 3

with ˙̂A derived from ˙̂v and â, given by
ż = Fz + D

∑
j∈N l

3

(
q3 − q j

)
v̂ = T −1z
â = C v̂

(18)

where F ∈ IRp×p is chosen to be Hurwitz, T ∈ IRp×p is
nonsingular, and D ∈ IRp×2 will be defined later. Note that the
implementation of (18) only depends on the local information,
i.e., q3−q j , j = 1, 2. Following the analysis in Section III, the
displacement r21 converges to its real value without any bias,
i.e., r̃21 → 0, since agents 1 and 2 have the full knowledge of
A and its derivative.

Regarding the time-varying linear transformation matrix
parameter, we have the following main result, giving an
integrated control framework to realize more flexible affine
formation maneuver control with full DOF in shape morphing.

Theorem 2: Consider a group of multiagent systems mod-
eled by (5), whose formation shape is determined by the
time-varying linear transformation matrix A(t) (or its equiv-
alent vector form) generated via (16). Under Assumption 1,
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by employing the control algorithm given in (17) together with
the estimation law (18), the agents can be stabilized at the
specified formation, i.e., ri j (t) → A(t)r∗

i j , ∀i, j , as t → ∞,
if there exists a solution for T to the following Sylvester
equation:

FT − T S + 8 = 0 (19)

where 8 = D(1T
2 ⊗ I2)M∗

3 C , and 3F + 28T −1 is Hurwitz.
Simultaneously, the precise estimation of the time-varying
formation maneuver parameter can also be obtained, i.e.,
v̂(t) → v(t) [equivalently, â(t) → a(t)], as t → ∞.

Proof: It has been recognized in [8] that the control
law (17b) for followers can render zero steady-state tracking
error, i.e.,

∑
j∈Ni

ωi j (qi − q j ) → 0, as t → ∞. Under this
circumstance, we know the entire formation will converge to
its predefined shape determined by the affine transformation
parameters once the leaders reach their target relative displace-
ments. Hence, with this “cascade structure,” we concentrate on
the convergence analysis of displacement errors r̃31 and r̃32.
Recalling the definition that M∗

3 = [Mat(r∗

31)
T, Mat(r∗

32)
T
]
T

and applying the operation of adding and subtracting the same
term D

∑
j∈N l

3
A(q∗

3 − q∗

j ) into the first line of (18), one has
ż = Fz + D

(
1T

2 ⊗ I2
) (

M∗

3 Cv + r̃3
)

v̂ = T −1z
â = C v̂.

(20)

For the formation parameter estimation, we introduce an
auxiliary variable

e = z − T v.

Then, it is straightforward to know e = T ṽ
1
= T (v̂ − v).

For the sake of brief presentation, let E 1
= 1T

2 ⊗ I2, 9
1
=

E M∗

3 C , and thus, 8 = D9. Thus, in combination with the
dynamics (16) and (20), the dynamics of e is given by

ė = Fe + (FT − T S + 8) v + DEr̃3.

From Theorem 2, under the condition that the Sylvester
equation (19) has solutions, ė can be stated as

ė = Fe + DEr̃3. (21)

Giving consideration of the control system q̇i = gi in (17),
there holds

˙̃r31 = −3k1r̃31 + k19T −1e +
1
3
9T −1 (Fe + DEr̃3) .

The detailed calculation process is given in Appendix B.
Akin to the expression of ˙̃r31, we can obtain the corresponding
form of ˙̃r32. Recalling the equality that Er̃3 = r̃31 + r̃32. For
the sake of brevity in notation, we define η

1
= Er̃3 ∈ IR2×1,

whose dynamics is formulated as

η̇ = −3k1η + 2k19T −1e +
2
3
9T −1 (Fe + Dη) . (22)

It can be observed in (22) that the formula within the
parentheses on the right side is exactly ė. By virtue of
such a coupling relationship and aiming to derive a concise

expression in terms of the errors η and e, we introduce a new
variable

ξ
1
= η −

2
3
9T −1e.

Taking the derivative of ξ and substituting (21) and (22)
yields

ξ̇ = η̇ −
2
3
9T −1ė = −3k1ξ. (23)

It is straightforward to know ξ → 0 exponentially, which
equivalently implies η → (2/3)9T −1e. With this convergence
property, (21) can be rewritten as

ė =
1
3

(
3F + 2D9T −1

)
e. (24)

Hence, one concludes from the Hurwitz stability of matrix
3F + 28T −1 that e decays to 0 at exponential speed, i.e.,
the formation maneuver parameter v̂ converges to its real
value v exponentially. In view of the estimator (18), the
components of matrix A(t) can be precisely derived, namely,
â(t) → a(t), as t → ∞, which in turn implies Er̃3 →

0 from (21). Following the same line of Section III, we know
limt→∞r3i (t) − A(t)r∗

3i = 0, i = 1, 2. This completes the
proof.

Remark 3: The condition for the existence of the solution
to Sylvester equations can be found in [30] and [31], where
specific numerical algorithms for solving Sylvester equations
are also presented, such as the Hessenberg–Schur method.

V. SIMULATION AND EXPERIMENTAL RESULTS

In this section, we validate the theoretical results of the
proposed estimation-based affine formation maneuver control
frameworks through numerical simulations and experiments.

A. Numerical Simulations

The simulation is conducted to validate the presented results
from Theorems 1 and 2. Hence, two cases are, respectively,
considered: constant and time-varying linear transformation
matrix A. In both cases, the formation team consists of
100 agents, whose nominal configuration is generated by

q∗

i =


(

r +
Ri

100

)
cos

(
1
2
π

√
i
)

(
r +

Ri
100

)
sin

(
1
2
π

√
i
)

, i = 1, . . . , 100.

where r = 3 and R = 20 are selected.
Their interaction relationship is shown in Fig. 2, whose

associated stress matrix1 is computed by the topological opti-
mization given in [26] (similar to [32] and [33], alternating
direction method of multipliers (ADMM) [34] is applied to
accelerate the solving process). We designate agents 49, 75,
and 99 as the leaders that control the variation of the entire
formation, namely, Vl = {49, 75, 99}.

1https://github.com/mkb9559/stress-matrix-100
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Fig. 2. Nominal formation with 100 agents.

1) Formation Control Under Constant A: To show the
effectiveness of the proposed estimation-based control (7)
and (8), we set the transformation vec(A) = a as

a =



[
3 0 0 3

]T
, 0 s ≤ t < 70 s[

2.2 0 0 1.2
]T

, 70 s ≤ t < 300 s[
3 0 0 3

]T
, 300 s ≤ t

(25)

which is actually a piecewise function of t , a slight extension
to the constant matrix A. The corresponding control param-
eters are set as k1 = 11, k2 = 1.6, and k3 = 1. The initial
position of agents are randomly generated around the origin.
A feedforward velocity along the x+-direction is added to all
agents’ formation controllers for a maneuver task.

The simulation results are presented in Figs. 3–5. Formation
variations during the simulation are illustrated in Fig. 3. At
t = 34 s, it sees that formation stabilization is achieved
from the random initialization. Then, the team of agents
shrinks their formation and passes through a narrow area with
obstacles. After that, agents recover to stretched formation
at t = 323 s. For the linked agents, the convergence to
the prescribed distances is shown in Fig. 4, which means
the desired formation maneuver is achieved. From Fig. 5,
it is clearly seen that the precise estimation can be obtained
using our proposed algorithm (8), providing guidance for other
agents in the integrated estimation-control framework.

2) Formation Control Under Time-Varying A(t): Without
loss of generality, it is assumed that the matrices S and C of
the exosystem (16) are

S =


0 −0.2 0 0

0.1 0 0 0
0 0.4 0 0.14
0 0 −0.2 0



C =


0.8 0 0 0.8
0 0 0.4 0
0 −0.56 0.56 0

0.8 0 0 0.8

 .

Under the constraints imposed on matrices F , D, and T in
Theorem 2, we choose

F =


−1 0 0.2 0
0 −1 0 0
0 2 −1 0
2 0 0 −1

 , D =


1 0
0 1
1 0
0 1



T =


0.2219 1.1102 1.2965 0.1126

−1.5683 −0.3168 0.0778 −1.6109
−2.3355 −0.0114 0.7697 −2.5296
−1.3409 1.8465 2.6439 −1.7450

 .

It can be verified that these choices satisfy the requirements
of the Hurwitz condition and the Sylvester equation (19)
with respect to certain specific matrices. Then, we implement
the controller (17) and the corresponding estimator (18) with
k1 = 1. The simulation results are presented in Figs. 6 and 7.
The distance of linked agents convergent to the prescribed
time-varying distances, as shown in Fig. 6. It is also clearly
shown in Fig. 7 that the precise estimation is obtained,
which supports the achievement of the desired time-varying
formation maneuver.

B. Experiments

In this section, we test the performances of our proposed
theoretical results on a group of Crazyflie 2.02 flying robots,
as shown in Fig. 8. The framework of the experiment system is
presented in Fig. 9. The positioning information of each robot
is provided by the auxiliary OptiTrack3 motion capture system
through recording the movements of the markers placed on the
top of robots (Fig. 8).

Crazyfile supports a variety of control modes [35], [36]. The
API “cmdVelocityWorld()” [37] supports velocities as control
inputs, which is exactly suitable for the considered integrator
systems (5) in this study. In this situation, the inputs are
actually the velocity commands, and thus, the positions can
be directly regulated. The flying robots communicate with
the ground control station (a PC) via Crazyradio PA4 data
transmission module.

It is considered four Crazyflies in experiments. Agents 1–3
are selected as the leaders that control the variation of the
entire formation, namely, Vl = {1, 2, 3}. The square nominal
formation and associated stress matrix are given as follows:

q∗

1 =
[
−0.5 0.5

]T

q∗

2 =
[

0.5 0.5
]T

q∗

3 =
[

0.5 −0.5
]T

q∗

4 =
[
−0.5 −0.5

]T
� =


−1 1 −1 1
1 −1 1 −1

−1 1 −1 1
1 −1 1 −1

 .

2https://www.bitcraze.io/products/crazyflie-2-1/
3https://www.optitrack.com/
4https://www.bitcraze.io/products/crazyradio-pa/
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Fig. 3. Formation variations with constant A in simulation.

Fig. 4. Distance convergence errors of pairwise agents using the proposed
control law (7) and associated estimator (8). It is shown that the distance
convergence errors are stabilized at the origin in different phases, which are
consistent with the change of A defined in (25).

Fig. 5. Componentwise estimation errors with respect to the linear trans-
formation matrix A. All the errors converge to zero in accordance with
the variation of A, implying the precise identification via the proposed
estimator (8).

1) Experiment Under Constant Matrix A: Considering the
limited flight time of the Crazyflie and the constrained experi-
mental space, we set the appropriate formation transformation

Fig. 6. Distance convergence errors of pairwise agents using the proposed
control law (17) and associated estimator (18). It is shown that the distance
convergence errors are stabilized at the origin, which also means that the
exosystem-generated time-varying A is well-estimated.

Fig. 7. Componentwise estimation errors with respect to the time-varying
linear transformation matrix A. All the errors converge to zero, implying the
precise identification via the proposed estimator (18).

parameter vec(A) = a as

a =


[

1 0 0 1
]T

, 0 s ≤ t < 21.5 s[
−1 0.5 0.8 1

]T
, t ≥ 21.5 s

(26)
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Fig. 8. Crazyflie flying robot with OptiTrack marker.

Fig. 9. Structure and information flow of the experimental system. The
designed controllers and estimators are deployed on Simulink modules.
We use “robotlib/Subscribe” and “robotlib/Publish” blocks to communicate
with the ground control station PC, which runs an ROS master for data
transferring between MATLAB and Crazyflie.

which is a piecewise constant function of t . The initial
positions are given by

q1 (0) =
[
−1 0.5

]T q2 (0) =
[

1 0.5
]T

q3 (0) =
[

1 −0.5
]T q4 (0) =

[
−1 0.5

]T
.

The corresponding parameters are set as k1 = 11, k2 = 1.6,
and k3 = 1 in the implementation of (7) and (8), under which
the snapshots illustrating formation transformation process can
be found in Fig. 10. The consistency between the desired
formation parameter and the observed formation change is
readily apparent. This is further verified by the distance con-
vergence errors depicted in Fig. 11. Regarding the estimation
performance, Fig. 12 presents the estimation errors for each
component with respect to the linear transformation matrix A,
affirming the effectiveness of the proposed estimation-based
method.

2) Experiment Under Time-Varying Matrix A: In this sce-
nario, the initial configuration of Crazyflies is identical to that
in Section V-B1. The exosystem generating the time-varying
A, as well as the associated matrix parameters F , D, and T ,
remains consistent with the setup detailed in Section V-A2.
By implementing the proposed controller (17) and the corre-
sponding estimator (18) with k1 = 1, the experimental results
are presented in Figs. 13–15. The snapshots capturing the

Fig. 10. Experimental results of formation flying conducted on four Crazyflie
robots utilizing our proposed control scheme outlined in (7) and (8). The left
column shows the spatial distribution of robots at various time instants, while
the corresponding Cartesian coordinates are displayed in the right column,
marked in blue. The desired formation configuration is highlighted in red.
(a) and (b) Progressive formation change associated with vec(A) during the
first phase. (c) At t = 17 s, it is evident that the robots have achieved
the desired formation. Subsequently, as the formation parameter changes
from 21.5 s, the entire formation undergoes a transformation to the new
configuration. (d) Finally, at t = 36 s, the formation successfully converges
to its newly prescribed pattern.

Fig. 11. Distance convergence errors of pairwise robots using the proposed
control law (7) and the associated estimator (8). The results demonstrate that
the distance convergence errors consistently stabilize at the origin following
each change of the parameter A as defined in (26).

evolution of the formation during the transformation process
are presented in Fig. 13. The Crazyflie robots are stabilized
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Fig. 12. Componentwise estimation errors with respect to the linear
transformation matrix A. It is observed that all errors consistently converged
to zero, aligning with the variations in A. These findings indicate the accurate
identification achieved through the proposed estimator (8).

Fig. 13. Experimental results using the proposed estimation-control
scheme (17) and (18). Upon reviewing all the snapshots and comparing
them with the desired formation shape, it is evident that the team Crazyflie
robots move in an organized pattern, regardless of the variations in geometric
shapes. This adaption to different shapes is consistent with the time-varying
linear transformation matrix A(t). (a) t = 5 s. (b) t = 15 s. (c) t = 25 s.
(d) t = 35 s.

at the desired relative distances with respect to its neighbors
are shown in Fig. 14, indicating convergence toward the
desired formation. Correspondingly, Fig. 15 reveals that the
precise knowledge of A(t) is accurately inferred through
the application of the strategy (18).

Fig. 14. Distance convergence errors between pairwise robots in the
experiment. It is observed that the errors quickly stabilized at the origin after
a brief period of adjustments.

Fig. 15. Componentwise estimation errors with respect to A(t). The observed
convergence clearly demonstrates the effectiveness of estimating time-varying
parameters using limited measurements.

VI. CONCLUSION

This article presents a comprehensive exploration of the
planar affine formation maneuver control strategy, wherein
the variation in formation shape is characterized by a matrix
parameter. With partially informed leaders, we have proposed
a joint estimation and control scheme for multiagent systems
that leverages local displacements. Through this scheme, the
unaware leader can accurately infer the unknown matrix
parameter. Specifically, only two leaders need to possess
the knowledge of the target linear transformation matrix
A, while the remaining leaders can estimate A based on
their locally measured relative displacements. Such an intrin-
sically interactive structure makes the proposed technique
find applicability in cooperative surveillance or monitoring
tasks with limited communication, and requiring information
security. We develop two distinct strategies, incorporating
distributed controllers and associated estimators, to handle
scenarios involving both constant and time-varying formation
parameters A(t). The presented simulations also verified the
effectiveness of large-scale formation tasks. Future research
directions involve exploring estimation techniques with less
available information and handling arbitrary, more complex
time-varying matrices A(t).

APPENDIX A
CALCULATION OF V̇1

Noting that r̃3 = (Hs ⊗ I2)q̃l , the derivative of V1 satisfies

V̇1 =
1
2

˙̃rT
3 (4 ⊗ I2) r̃3 +

1
2

r̃T
3 (4 ⊗ I2) ˙̃r3 + ãT ˙̃a
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= r̃T
3 (4 ⊗ I2) ˙̃r3 + ãT ˙̃a

=
[
(Hs ⊗ I2) q̃l

]T
(4 ⊗ I2) (Hs ⊗ I2) ˙̃ql + ãT ˙̃a (27)

where the last equality is derived by invoking the symmetry
property of 4. Replacing ˙̃ql and ˙̃a in the last equation by (12)
and (13), respectively, we have

V̇1 =
[
(Hs ⊗ I2) q̃l

]T
(4 ⊗ I2) (Hs ⊗ I2)

×
(
−k1

(
HT

s Hs ⊗ I2
)

q̃l

+ k1
(
[1, −1, 0]T

⊗ I2
)

r̃21

+ k1 (diag (0, 0, 1) ⊗ I2)
(
131T

2 ⊗ I2
)

M∗

3 ã
)

+ ãT
(
−k2

(
M∗

3
)T M∗

3 ã + k2
(
M∗

3
)T r̃3

)
= −k1

[
(Hs ⊗ I2) q̃l

]T
(4 ⊗ I2)

(
Hs HT

s ⊗ I2
)
(Hs ⊗ I2) q̃l

+ k1
[
(Hs ⊗ I2) q̃l

]T
(4 ⊗ I2)

(
[−1, 1]T

⊗ I2
)

r̃21

+ k1
[
(Hs ⊗ I2) q̃l

]T
(4 ⊗ I2)

([
1 1
1 1

]
⊗ I2

)
M∗

3 ã

− k2
(
M∗

3 ã
)T M∗

3 ã + k2
(
M∗

3 ã
)T r̃3. (28)

By employing Young’s inequality for real numbers, we obtain
that

V̇1 ≤ −k1λmin
(
4Le

s
)
∥r̃3∥

2
+ k1λmax

(
4121T

2
)
∥r̃3∥

∥∥M∗

3 ã
∥∥

− k2
∥∥M∗

3 ã
∥∥2

+ k2
∥∥M∗

3 ã
∥∥ ∥r̃3∥

+
√

2k1λmax (4) ∥r̃3∥ ∥r̃21∥

≤ −k1λmin
(
4Le

s
)
∥r̃3∥

2
− k2

∥∥M∗

3 ã
∥∥2

+
k1

2
λmax

(
4121T

2
)
∥r̃3∥

2
+

k1

2
λmax

(
4121T

2
) ∥∥M∗

3 ã
∥∥2

+
k2

2
∥r̃3∥

2
+

k2

2

∥∥M∗

3 ã
∥∥2

+
√

2k1λmax (4)

(
ϵ

2
∥r̃3∥

2
+

1
2ϵ

∥r̃21∥
2
)

≤ −

(
k1λmin

(
4Le

s
)
−

k1

2
λmax

(
4121T

2
)
−

k2

2

−
ϵ
√

2k1

2
λmax (4)

)
∥r̃3∥

2

−

(
k2 −

k1

2
λmax

(
4121T

2
)
−

k2

2

) ∥∥M∗

3 ã
∥∥2

+

√
2k1

2ϵ
λmax (4) ∥r̃21∥

2

1
= − α ∥r̃3∥

2
− β

∥∥M∗

3 ã
∥∥2

+ γ ∥r̃21∥
2 (29)

where ϵ is chosen to be a small positive number, such that{
λmin

(
4Le

s
)

> λmax
(
4121T

2
)
+ ϵ

√
2/2λmax (4)

k2 > k1λmax
(
4121T

2
)
.

(30)

It can be proven that if the matrix 4 and the small number
ϵ are chosen satisfying (30), then the coefficients α and β

will always be positive. In this context, when ϵ is sufficiently
small, one available choice of 4 satisfying (30) is[

1 −0.5
−0.5 1

]
.

Under the given condition that the leaders linearly span IR2,
we know that the matrix M∗

3 is full rank. Notice that

∥M∗

3 ã∥
2

= ãT (
M∗

3
)T M∗

3 ã ≥ λmin

((
M∗

3
)T M∗

3

)
∥ã∥

2 .

Hence, V̇1 in (29) satisfies

V̇1 ≤ −α ∥r̃3∥
2
− βλmin

((
M∗

3
)T M∗

3

)
∥ã∥

2
+ γ ∥r̃21∥

2

≤ − min
{
α, βλmin

((
M∗

3
)T M∗

3

)} (
∥r̃3∥

2
+ ∥ã∥

2
)

+ γ ∥r̃21∥
2 . (31)

Recalling that for the sub-Lyapunov function V1, there holds

V1 =
1
2

r̃T
3 (4 ⊗ I2) r̃3 +

1
2

ãTã

≤
1
2

max {λmax (4) , 1}

(
∥r̃3∥

2
+ ∥ã∥

2
)

.

Then, (31) can be rewritten as

V̇1 ≤ −

2 min
{
α, βλmin

((
M∗

3
)T M∗

3

)}
max {λmax (4) , 1}

V1 + γ ∥r̃21∥
2 .

APPENDIX B
CALCULATION OF ṙ31

Under the assumption that q̇i = gi with gi given in (17),
one has

˙̃r31 = −k1

(
r31 − Âr∗

31 + r32 − Âr∗

32

)
+ k1

(
r12 − Ar∗

12 + r13 − Ar∗

13
)

+
1
3

(
˙̂Ar∗

31 +
˙̂Ar∗

32

)
−

1
3

(
Ȧr∗

12 + Ȧr∗

13
)

− Ȧr∗

31.

Rearranging the first two lines and adding and subtracting the
same term (1/3) Ȧ(r∗

31 + r∗

32) to the third line yields

˙̃r31 = −k1

(
r31 − Âr∗

31 + r31−Ar∗

31

)
− k1

(
r32 − r12 + Ar∗

12 − Âr∗

32

)
+

1
3

(
˙̂A − Ȧ

) (
r∗

31 + r∗

32
)

+
1
3

Ȧ
(
r∗

31 + r∗

32
)
−

1
3

Ȧ
(
r∗

12 + r∗

13
)
− Ȧr∗

31.

Then, applying the same trick by adding and subtracting the
term Ar∗

31 to the first two lines of the above equation, there
holds

˙̃r31 = −k1

(
2r̃31 −

(
Â − A

)
r∗

31

)
− k1

(
r̃31 −

(
Â − A

)
r∗

32

)
+

1
3

(
˙̂A − Ȧ

) (
r∗

31 + r∗

32
)
+

1
3

∗ 3 Ȧr∗

31 − Ȧr∗

31

= −3k1r̃31 + k1

(
Â − A

) (
r∗

31 + r∗

32
)
+

1
3

(
˙̂A − A

)
×

(
r∗

31 + r∗

32
)
.

In light of the equivalence between ( Â − A)(r∗

31 + r∗

32) and
(1T

2 ⊗ I2)M∗

3 C ṽ, we get

˙̃r31 = −3k1r̃31 + k1
(
1T

2 ⊗ I2
)

M∗

3 C ṽ +
1
3

(
1T

2 ⊗ I2
)

M∗

3 C ˙̃v.
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Recalling the fact that ṽ = T −1e, and in combination
with (21), one obtains

˙̃r31 = −3k1r̃31 + k1
(
1T

2 ⊗ I2
)

M∗

3 CT −1e

+
1
3

(
1T

2 ⊗ I2
)

M∗

3 CT −1 (Fe + DEr̃3) (32)

which can also be equivalently written in a relatively compact
form as follows:

˙̃r31 = −3k1r̃31 + k19T −1e +
1
3
9T −1 (Fe + DEr̃3) .
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